\left\{ \begin{array} { l } { x + y + z = 7 } \\ { - 14 y - \frac { 7 } { 1 } z = 0 } \\ { 3 x + 6 y - 2 z = 0 } \end{array} \right.
Whakaoti mō x, y, z
x = \frac{70}{13} = 5\frac{5}{13} \approx 5.384615385
y = -\frac{21}{13} = -1\frac{8}{13} \approx -1.615384615
z = \frac{42}{13} = 3\frac{3}{13} \approx 3.230769231
Tohaina
Kua tāruatia ki te papatopenga
x=-y-z+7
Me whakaoti te x+y+z=7 mō x.
3\left(-y-z+7\right)+6y-2z=0
Whakakapia te -y-z+7 mō te x i te whārite 3x+6y-2z=0.
y=-\frac{1}{2}z z=\frac{21}{5}+\frac{3}{5}y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō z.
z=\frac{21}{5}+\frac{3}{5}\left(-\frac{1}{2}\right)z
Whakakapia te -\frac{1}{2}z mō te y i te whārite z=\frac{21}{5}+\frac{3}{5}y.
z=\frac{42}{13}
Me whakaoti te z=\frac{21}{5}+\frac{3}{5}\left(-\frac{1}{2}\right)z mō z.
y=-\frac{1}{2}\times \frac{42}{13}
Whakakapia te \frac{42}{13} mō te z i te whārite y=-\frac{1}{2}z.
y=-\frac{21}{13}
Tātaitia te y i te y=-\frac{1}{2}\times \frac{42}{13}.
x=-\left(-\frac{21}{13}\right)-\frac{42}{13}+7
Whakakapia te -\frac{21}{13} mō te y me te \frac{42}{13} mō z i te whārite x=-y-z+7.
x=\frac{70}{13}
Tātaitia te x i te x=-\left(-\frac{21}{13}\right)-\frac{42}{13}+7.
x=\frac{70}{13} y=-\frac{21}{13} z=\frac{42}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}