\left\{ \begin{array} { l } { x + y + z = 6 } \\ { x + 2 y + 3 z = 14 } \\ { x + 3 y + 9 z = 34 } \end{array} \right.
Whakaoti mō x, y, z
x=1
y=2
z=3
Tohaina
Kua tāruatia ki te papatopenga
x=-y-z+6
Me whakaoti te x+y+z=6 mō x.
-y-z+6+2y+3z=14 -y-z+6+3y+9z=34
Whakakapia te -y-z+6 mō te x i te whārite tuarua me te tuatoru.
y=8-2z z=\frac{7}{2}-\frac{1}{4}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{7}{2}-\frac{1}{4}\left(8-2z\right)
Whakakapia te 8-2z mō te y i te whārite z=\frac{7}{2}-\frac{1}{4}y.
z=3
Me whakaoti te z=\frac{7}{2}-\frac{1}{4}\left(8-2z\right) mō z.
y=8-2\times 3
Whakakapia te 3 mō te z i te whārite y=8-2z.
y=2
Tātaitia te y i te y=8-2\times 3.
x=-2-3+6
Whakakapia te 2 mō te y me te 3 mō z i te whārite x=-y-z+6.
x=1
Tātaitia te x i te x=-2-3+6.
x=1 y=2 z=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}