\left\{ \begin{array} { l } { x + m y = a } \\ { x - n y = b } \end{array} \right.
Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}x=\frac{bm+an}{m+n}\text{, }y=-\frac{b-a}{m+n}\text{, }&m\neq -n\\x=ny+b\text{, }y\in \mathrm{C}\text{, }&a=b\text{ and }m=-n\\x=b\text{, }y\in \mathrm{C}\text{, }&m=0\text{ and }n=0\text{ and }a=b\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}x=\frac{bm+an}{m+n}\text{, }y=-\frac{b-a}{m+n}\text{, }&m\neq -n\\x=ny+b\text{, }y\in \mathrm{R}\text{, }&a=b\text{ and }m=-n\\x=b\text{, }y\in \mathrm{R}\text{, }&m=0\text{ and }n=0\text{ and }a=b\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+my=a,x+\left(-n\right)y=b
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+my=a
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=\left(-m\right)y+a
Me tango my mai i ngā taha e rua o te whārite.
\left(-m\right)y+a+\left(-n\right)y=b
Whakakapia te a-my mō te x ki tērā atu whārite, x+\left(-n\right)y=b.
\left(-m-n\right)y+a=b
Tāpiri -my ki te -ny.
\left(-m-n\right)y=b-a
Me tango a mai i ngā taha e rua o te whārite.
y=-\frac{b-a}{m+n}
Whakawehea ngā taha e rua ki te -m-n.
x=\left(-m\right)\left(-\frac{b-a}{m+n}\right)+a
Whakaurua te -\frac{b-a}{m+n} mō y ki x=\left(-m\right)y+a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{m\left(b-a\right)}{m+n}+a
Whakareatia -m ki te -\frac{b-a}{m+n}.
x=\frac{bm+an}{m+n}
Tāpiri a ki te \frac{m\left(b-a\right)}{m+n}.
x=\frac{bm+an}{m+n},y=-\frac{b-a}{m+n}
Kua oti te pūnaha te whakatau.
x+my=a,x+\left(-n\right)y=b
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a\\b\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&m\\1&-n\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{n}{-n-m}&-\frac{m}{-n-m}\\-\frac{1}{-n-m}&\frac{1}{-n-m}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}&\frac{m}{m+n}\\\frac{1}{m+n}&\frac{1}{-m-n}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}a+\frac{m}{m+n}b\\\frac{1}{m+n}a+\frac{1}{-m-n}b\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{bm+an}{m+n}\\\frac{a-b}{m+n}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
Tangohia ngā huānga poukapa x me y.
x+my=a,x+\left(-n\right)y=b
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+my+ny=a-b
Me tango x+\left(-n\right)y=b mai i x+my=a mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
my+ny=a-b
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m+n\right)y=a-b
Tāpiri my ki te ny.
y=\frac{a-b}{m+n}
Whakawehea ngā taha e rua ki te m+n.
x+\left(-n\right)\times \frac{a-b}{m+n}=b
Whakaurua te \frac{a-b}{m+n} mō y ki x+\left(-n\right)y=b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{n\left(a-b\right)}{m+n}=b
Whakareatia -n ki te \frac{a-b}{m+n}.
x=\frac{bm+an}{m+n}
Me tāpiri \frac{n\left(a-b\right)}{m+n} ki ngā taha e rua o te whārite.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
Kua oti te pūnaha te whakatau.
x+my=a,x+\left(-n\right)y=b
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+my=a
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=\left(-m\right)y+a
Me tango my mai i ngā taha e rua o te whārite.
\left(-m\right)y+a+\left(-n\right)y=b
Whakakapia te a-my mō te x ki tērā atu whārite, x+\left(-n\right)y=b.
\left(-m-n\right)y+a=b
Tāpiri -my ki te -ny.
\left(-m-n\right)y=b-a
Me tango a mai i ngā taha e rua o te whārite.
y=-\frac{b-a}{m+n}
Whakawehea ngā taha e rua ki te -m-n.
x=\left(-m\right)\left(-\frac{b-a}{m+n}\right)+a
Whakaurua te -\frac{b-a}{m+n} mō y ki x=\left(-m\right)y+a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{m\left(b-a\right)}{m+n}+a
Whakareatia -m ki te -\frac{b-a}{m+n}.
x=\frac{bm+an}{m+n}
Tāpiri a ki te \frac{m\left(b-a\right)}{m+n}.
x=\frac{bm+an}{m+n},y=-\frac{b-a}{m+n}
Kua oti te pūnaha te whakatau.
x+my=a,x+\left(-n\right)y=b
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a\\b\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&m\\1&-n\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{n}{-n-m}&-\frac{m}{-n-m}\\-\frac{1}{-n-m}&\frac{1}{-n-m}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}&\frac{m}{m+n}\\\frac{1}{m+n}&\frac{1}{-m-n}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}a+\frac{m}{m+n}b\\\frac{1}{m+n}a+\frac{1}{-m-n}b\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{bm+an}{m+n}\\\frac{a-b}{m+n}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
Tangohia ngā huānga poukapa x me y.
x+my=a,x+\left(-n\right)y=b
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+my+ny=a-b
Me tango x+\left(-n\right)y=b mai i x+my=a mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
my+ny=a-b
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(m+n\right)y=a-b
Tāpiri my ki te ny.
y=\frac{a-b}{m+n}
Whakawehea ngā taha e rua ki te m+n.
x+\left(-n\right)\times \frac{a-b}{m+n}=b
Whakaurua te \frac{a-b}{m+n} mō y ki x+\left(-n\right)y=b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{n\left(a-b\right)}{m+n}=b
Whakareatia -n ki te \frac{a-b}{m+n}.
x=\frac{bm+an}{m+n}
Me tāpiri \frac{n\left(a-b\right)}{m+n} ki ngā taha e rua o te whārite.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}