Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+5y=5,3x-2y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+5y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-5y+5
Me tango 5y mai i ngā taha e rua o te whārite.
3\left(-5y+5\right)-2y=3
Whakakapia te -5y+5 mō te x ki tērā atu whārite, 3x-2y=3.
-15y+15-2y=3
Whakareatia 3 ki te -5y+5.
-17y+15=3
Tāpiri -15y ki te -2y.
-17y=-12
Me tango 15 mai i ngā taha e rua o te whārite.
y=\frac{12}{17}
Whakawehea ngā taha e rua ki te -17.
x=-5\times \frac{12}{17}+5
Whakaurua te \frac{12}{17} mō y ki x=-5y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{60}{17}+5
Whakareatia -5 ki te \frac{12}{17}.
x=\frac{25}{17}
Tāpiri 5 ki te -\frac{60}{17}.
x=\frac{25}{17},y=\frac{12}{17}
Kua oti te pūnaha te whakatau.
x+5y=5,3x-2y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-5\times 3}&-\frac{5}{-2-5\times 3}\\-\frac{3}{-2-5\times 3}&\frac{1}{-2-5\times 3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{5}{17}\\\frac{3}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{5}{17}\times 3\\\frac{3}{17}\times 5-\frac{1}{17}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{17}\\\frac{12}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{25}{17},y=\frac{12}{17}
Tangohia ngā huānga poukapa x me y.
x+5y=5,3x-2y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 5y=3\times 5,3x-2y=3
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+15y=15,3x-2y=3
Whakarūnātia.
3x-3x+15y+2y=15-3
Me tango 3x-2y=3 mai i 3x+15y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y+2y=15-3
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=15-3
Tāpiri 15y ki te 2y.
17y=12
Tāpiri 15 ki te -3.
y=\frac{12}{17}
Whakawehea ngā taha e rua ki te 17.
3x-2\times \frac{12}{17}=3
Whakaurua te \frac{12}{17} mō y ki 3x-2y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{24}{17}=3
Whakareatia -2 ki te \frac{12}{17}.
3x=\frac{75}{17}
Me tāpiri \frac{24}{17} ki ngā taha e rua o te whārite.
x=\frac{25}{17}
Whakawehea ngā taha e rua ki te 3.
x=\frac{25}{17},y=\frac{12}{17}
Kua oti te pūnaha te whakatau.