Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=5,-2x-y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+5
Me tango 4y mai i ngā taha e rua o te whārite.
-2\left(-4y+5\right)-y=-4
Whakakapia te -4y+5 mō te x ki tērā atu whārite, -2x-y=-4.
8y-10-y=-4
Whakareatia -2 ki te -4y+5.
7y-10=-4
Tāpiri 8y ki te -y.
7y=6
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=\frac{6}{7}
Whakawehea ngā taha e rua ki te 7.
x=-4\times \frac{6}{7}+5
Whakaurua te \frac{6}{7} mō y ki x=-4y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{24}{7}+5
Whakareatia -4 ki te \frac{6}{7}.
x=\frac{11}{7}
Tāpiri 5 ki te -\frac{24}{7}.
x=\frac{11}{7},y=\frac{6}{7}
Kua oti te pūnaha te whakatau.
x+4y=5,-2x-y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right))\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\-2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-2&-1\end{matrix}\right))\left(\begin{matrix}5\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4\left(-2\right)}&-\frac{4}{-1-4\left(-2\right)}\\-\frac{-2}{-1-4\left(-2\right)}&\frac{1}{-1-4\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&-\frac{4}{7}\\\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}5\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 5-\frac{4}{7}\left(-4\right)\\\frac{2}{7}\times 5+\frac{1}{7}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{7}\\\frac{6}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{11}{7},y=\frac{6}{7}
Tangohia ngā huānga poukapa x me y.
x+4y=5,-2x-y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\times 4y=-2\times 5,-2x-y=-4
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x-8y=-10,-2x-y=-4
Whakarūnātia.
-2x+2x-8y+y=-10+4
Me tango -2x-y=-4 mai i -2x-8y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+y=-10+4
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-10+4
Tāpiri -8y ki te y.
-7y=-6
Tāpiri -10 ki te 4.
y=\frac{6}{7}
Whakawehea ngā taha e rua ki te -7.
-2x-\frac{6}{7}=-4
Whakaurua te \frac{6}{7} mō y ki -2x-y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=-\frac{22}{7}
Me tāpiri \frac{6}{7} ki ngā taha e rua o te whārite.
x=\frac{11}{7}
Whakawehea ngā taha e rua ki te -2.
x=\frac{11}{7},y=\frac{6}{7}
Kua oti te pūnaha te whakatau.