Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=-1,2x-4y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y-1
Me tango 4y mai i ngā taha e rua o te whārite.
2\left(-4y-1\right)-4y=4
Whakakapia te -4y-1 mō te x ki tērā atu whārite, 2x-4y=4.
-8y-2-4y=4
Whakareatia 2 ki te -4y-1.
-12y-2=4
Tāpiri -8y ki te -4y.
-12y=6
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te -12.
x=-4\left(-\frac{1}{2}\right)-1
Whakaurua te -\frac{1}{2} mō y ki x=-4y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2-1
Whakareatia -4 ki te -\frac{1}{2}.
x=1
Tāpiri -1 ki te 2.
x=1,y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
x+4y=-1,2x-4y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\2&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-4\times 2}&-\frac{4}{-4-4\times 2}\\-\frac{2}{-4-4\times 2}&\frac{1}{-4-4\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{6}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 4\\\frac{1}{6}\left(-1\right)-\frac{1}{12}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
x+4y=-1,2x-4y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\times 4y=2\left(-1\right),2x-4y=4
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+8y=-2,2x-4y=4
Whakarūnātia.
2x-2x+8y+4y=-2-4
Me tango 2x-4y=4 mai i 2x+8y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+4y=-2-4
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12y=-2-4
Tāpiri 8y ki te 4y.
12y=-6
Tāpiri -2 ki te -4.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 12.
2x-4\left(-\frac{1}{2}\right)=4
Whakaurua te -\frac{1}{2} mō y ki 2x-4y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+2=4
Whakareatia -4 ki te -\frac{1}{2}.
2x=2
Me tango 2 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.