Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+3y=1,2x+3y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-3y+1
Me tango 3y mai i ngā taha e rua o te whārite.
2\left(-3y+1\right)+3y=1
Whakakapia te -3y+1 mō te x ki tērā atu whārite, 2x+3y=1.
-6y+2+3y=1
Whakareatia 2 ki te -3y+1.
-3y+2=1
Tāpiri -6y ki te 3y.
-3y=-1
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te -3.
x=-3\times \frac{1}{3}+1
Whakaurua te \frac{1}{3} mō y ki x=-3y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+1
Whakareatia -3 ki te \frac{1}{3}.
x=0
Tāpiri 1 ki te -1.
x=0,y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
x+3y=1,2x+3y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-3\times 2}&-\frac{3}{3-3\times 2}\\-\frac{2}{3-3\times 2}&\frac{1}{3-3\times 2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+1\\\frac{2-1}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
x+3y=1,2x+3y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-2x+3y-3y=1-1
Me tango 2x+3y=1 mai i x+3y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-2x=1-1
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=1-1
Tāpiri x ki te -2x.
-x=0
Tāpiri 1 ki te -1.
x=0
Whakawehea ngā taha e rua ki te -1.
3y=1
Whakaurua te 0 mō x ki 2x+3y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x=0,y=\frac{1}{3}
Kua oti te pūnaha te whakatau.