Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=7,-x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+7
Me tango 2y mai i ngā taha e rua o te whārite.
-\left(-2y+7\right)+y=1
Whakakapia te -2y+7 mō te x ki tērā atu whārite, -x+y=1.
2y-7+y=1
Whakareatia -1 ki te -2y+7.
3y-7=1
Tāpiri 2y ki te y.
3y=8
Me tāpiri 7 ki ngā taha e rua o te whārite.
y=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
x=-2\times \frac{8}{3}+7
Whakaurua te \frac{8}{3} mō y ki x=-2y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{16}{3}+7
Whakareatia -2 ki te \frac{8}{3}.
x=\frac{5}{3}
Tāpiri 7 ki te -\frac{16}{3}.
x=\frac{5}{3},y=\frac{8}{3}
Kua oti te pūnaha te whakatau.
x+2y=7,-x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 7-\frac{2}{3}\\\frac{1}{3}\times 7+\frac{1}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{8}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{3},y=\frac{8}{3}
Tangohia ngā huānga poukapa x me y.
x+2y=7,-x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-2y=-7,-x+y=1
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+x-2y-y=-7-1
Me tango -x+y=1 mai i -x-2y=-7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-y=-7-1
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-7-1
Tāpiri -2y ki te -y.
-3y=-8
Tāpiri -7 ki te -1.
y=\frac{8}{3}
Whakawehea ngā taha e rua ki te -3.
-x+\frac{8}{3}=1
Whakaurua te \frac{8}{3} mō y ki -x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-\frac{5}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
x=\frac{5}{3}
Whakawehea ngā taha e rua ki te -1.
x=\frac{5}{3},y=\frac{8}{3}
Kua oti te pūnaha te whakatau.