Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=2,x-3y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+2
Me tango 2y mai i ngā taha e rua o te whārite.
-2y+2-3y=-5
Whakakapia te -2y+2 mō te x ki tērā atu whārite, x-3y=-5.
-5y+2=-5
Tāpiri -2y ki te -3y.
-5y=-7
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{7}{5}
Whakawehea ngā taha e rua ki te -5.
x=-2\times \frac{7}{5}+2
Whakaurua te \frac{7}{5} mō y ki x=-2y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{14}{5}+2
Whakareatia -2 ki te \frac{7}{5}.
x=-\frac{4}{5}
Tāpiri 2 ki te -\frac{14}{5}.
x=-\frac{4}{5},y=\frac{7}{5}
Kua oti te pūnaha te whakatau.
x+2y=2,x-3y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2+\frac{2}{5}\left(-5\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\\frac{7}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{4}{5},y=\frac{7}{5}
Tangohia ngā huānga poukapa x me y.
x+2y=2,x-3y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+2y+3y=2+5
Me tango x-3y=-5 mai i x+2y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+3y=2+5
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=2+5
Tāpiri 2y ki te 3y.
5y=7
Tāpiri 2 ki te 5.
y=\frac{7}{5}
Whakawehea ngā taha e rua ki te 5.
x-3\times \frac{7}{5}=-5
Whakaurua te \frac{7}{5} mō y ki x-3y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{21}{5}=-5
Whakareatia -3 ki te \frac{7}{5}.
x=-\frac{4}{5}
Me tāpiri \frac{21}{5} ki ngā taha e rua o te whārite.
x=-\frac{4}{5},y=\frac{7}{5}
Kua oti te pūnaha te whakatau.