Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=1,x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+1
Me tango 2y mai i ngā taha e rua o te whārite.
-2y+1+y=2
Whakakapia te -2y+1 mō te x ki tērā atu whārite, x+y=2.
-y+1=2
Tāpiri -2y ki te y.
-y=1
Me tango 1 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -1.
x=-2\left(-1\right)+1
Whakaurua te -1 mō y ki x=-2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+1
Whakareatia -2 ki te -1.
x=3
Tāpiri 1 ki te 2.
x=3,y=-1
Kua oti te pūnaha te whakatau.
x+2y=1,x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{2}{1-2}\\-\frac{1}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+2\times 2\\1-2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-1
Tangohia ngā huānga poukapa x me y.
x+2y=1,x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+2y-y=1-2
Me tango x+y=2 mai i x+2y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-y=1-2
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=1-2
Tāpiri 2y ki te -y.
y=-1
Tāpiri 1 ki te -2.
x-1=2
Whakaurua te -1 mō y ki x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=3,y=-1
Kua oti te pūnaha te whakatau.