\left\{ \begin{array} { l } { x + 2 y = - 2 } \\ { 4 y = 1 - 3 x } \end{array} \right.
Whakaoti mō x, y
x=5
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4y+3x=1
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
x+2y=-2,3x+4y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y-2
Me tango 2y mai i ngā taha e rua o te whārite.
3\left(-2y-2\right)+4y=1
Whakakapia te -2y-2 mō te x ki tērā atu whārite, 3x+4y=1.
-6y-6+4y=1
Whakareatia 3 ki te -2y-2.
-2y-6=1
Tāpiri -6y ki te 4y.
-2y=7
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=-\frac{7}{2}
Whakawehea ngā taha e rua ki te -2.
x=-2\left(-\frac{7}{2}\right)-2
Whakaurua te -\frac{7}{2} mō y ki x=-2y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=7-2
Whakareatia -2 ki te -\frac{7}{2}.
x=5
Tāpiri -2 ki te 7.
x=5,y=-\frac{7}{2}
Kua oti te pūnaha te whakatau.
4y+3x=1
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
x+2y=-2,3x+4y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 3}&-\frac{2}{4-2\times 3}\\-\frac{3}{4-2\times 3}&\frac{1}{4-2\times 3}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+1\\\frac{3}{2}\left(-2\right)-\frac{1}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-\frac{7}{2}
Tangohia ngā huānga poukapa x me y.
4y+3x=1
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
x+2y=-2,3x+4y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 2y=3\left(-2\right),3x+4y=1
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+6y=-6,3x+4y=1
Whakarūnātia.
3x-3x+6y-4y=-6-1
Me tango 3x+4y=1 mai i 3x+6y=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-4y=-6-1
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-6-1
Tāpiri 6y ki te -4y.
2y=-7
Tāpiri -6 ki te -1.
y=-\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
3x+4\left(-\frac{7}{2}\right)=1
Whakaurua te -\frac{7}{2} mō y ki 3x+4y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-14=1
Whakareatia 4 ki te -\frac{7}{2}.
3x=15
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 3.
x=5,y=-\frac{7}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}