Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=-18,3x-y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y-18
Me tango 2y mai i ngā taha e rua o te whārite.
3\left(-2y-18\right)-y=-1
Whakakapia te -2y-18 mō te x ki tērā atu whārite, 3x-y=-1.
-6y-54-y=-1
Whakareatia 3 ki te -2y-18.
-7y-54=-1
Tāpiri -6y ki te -y.
-7y=53
Me tāpiri 54 ki ngā taha e rua o te whārite.
y=-\frac{53}{7}
Whakawehea ngā taha e rua ki te -7.
x=-2\left(-\frac{53}{7}\right)-18
Whakaurua te -\frac{53}{7} mō y ki x=-2y-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{106}{7}-18
Whakareatia -2 ki te -\frac{53}{7}.
x=-\frac{20}{7}
Tāpiri -18 ki te \frac{106}{7}.
x=-\frac{20}{7},y=-\frac{53}{7}
Kua oti te pūnaha te whakatau.
x+2y=-18,3x-y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-18\right)+\frac{2}{7}\left(-1\right)\\\frac{3}{7}\left(-18\right)-\frac{1}{7}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{7}\\-\frac{53}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{20}{7},y=-\frac{53}{7}
Tangohia ngā huānga poukapa x me y.
x+2y=-18,3x-y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 2y=3\left(-18\right),3x-y=-1
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+6y=-54,3x-y=-1
Whakarūnātia.
3x-3x+6y+y=-54+1
Me tango 3x-y=-1 mai i 3x+6y=-54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+y=-54+1
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=-54+1
Tāpiri 6y ki te y.
7y=-53
Tāpiri -54 ki te 1.
y=-\frac{53}{7}
Whakawehea ngā taha e rua ki te 7.
3x-\left(-\frac{53}{7}\right)=-1
Whakaurua te -\frac{53}{7} mō y ki 3x-y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=-\frac{60}{7}
Me tango \frac{53}{7} mai i ngā taha e rua o te whārite.
x=-\frac{20}{7}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{20}{7},y=-\frac{53}{7}
Kua oti te pūnaha te whakatau.