Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

ty+2-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
ty-x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
ty-x=-2,x^{2}+4y^{2}=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
ty-x=-2
Whakaotia te ty-x=-2 mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
ty=x-2
Me tango -x mai i ngā taha e rua o te whārite.
y=\frac{1}{t}x-\frac{2}{t}
Whakawehea ngā taha e rua ki te t.
x^{2}+4\left(\frac{1}{t}x-\frac{2}{t}\right)^{2}=4
Whakakapia te \frac{1}{t}x-\frac{2}{t} mō te y ki tērā atu whārite, x^{2}+4y^{2}=4.
x^{2}+4\left(\left(\frac{1}{t}\right)^{2}x^{2}+2\left(-\frac{2}{t}\right)\times \frac{1}{t}x+\left(-\frac{2}{t}\right)^{2}\right)=4
Pūrua \frac{1}{t}x-\frac{2}{t}.
x^{2}+4\times \left(\frac{1}{t}\right)^{2}x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}=4
Whakareatia 4 ki te \left(\frac{1}{t}\right)^{2}x^{2}+2\left(-\frac{2}{t}\right)\times \frac{1}{t}x+\left(-\frac{2}{t}\right)^{2}.
\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}=4
Tāpiri x^{2} ki te 4\times \left(\frac{1}{t}\right)^{2}x^{2}.
\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)x^{2}+8\left(-\frac{2}{t}\right)\times \frac{1}{t}x+4\left(-\frac{2}{t}\right)^{2}-4=0
Me tango 4 mai i ngā taha e rua o te whārite.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\left(8\left(-\frac{2}{t}\right)\times \frac{1}{t}\right)^{2}-4\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+4\times \left(\frac{1}{t}\right)^{2} mō a, 4\times 2\times \frac{1}{t}\left(-\frac{2}{t}\right) mō b, me \frac{16}{t^{2}}-4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}-4\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Pūrua 4\times 2\times \frac{1}{t}\left(-\frac{2}{t}\right).
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}+\left(-4-\frac{16}{t^{2}}\right)\left(-4+\frac{16}{t^{2}}\right)}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Whakareatia -4 ki te 1+4\times \left(\frac{1}{t}\right)^{2}.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{\frac{256}{t^{4}}+16-\frac{256}{t^{4}}}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Whakareatia -4-\frac{16}{t^{2}} ki te \frac{16}{t^{2}}-4.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±\sqrt{16}}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Tāpiri \frac{256}{t^{4}} ki te -\frac{256}{t^{4}}+16.
x=\frac{-8\left(-\frac{2}{t}\right)\times \frac{1}{t}±4}{2\left(1+4\times \left(\frac{1}{t}\right)^{2}\right)}
Tuhia te pūtakerua o te 16.
x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}}
Whakareatia 2 ki te 1+4\times \left(\frac{1}{t}\right)^{2}.
x=\frac{4+\frac{16}{t^{2}}}{2+\frac{8}{t^{2}}}
Nā, me whakaoti te whārite x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}} ina he tāpiri te ±. Tāpiri \frac{16}{t^{2}} ki te 4.
x=2
Whakawehe 4+\frac{16}{t^{2}} ki te 2+\frac{8}{t^{2}}.
x=\frac{-4+\frac{16}{t^{2}}}{2+\frac{8}{t^{2}}}
Nā, me whakaoti te whārite x=\frac{\frac{16}{t^{2}}±4}{2+\frac{8}{t^{2}}} ina he tango te ±. Tango 4 mai i \frac{16}{t^{2}}.
x=-\frac{2\left(t^{2}-4\right)}{t^{2}+4}
Whakawehe \frac{16}{t^{2}}-4 ki te 2+\frac{8}{t^{2}}.
y=\frac{1}{t}\times 2-\frac{2}{t}
E rua ngā otinga mō x: 2 me -\frac{2\left(t^{2}-4\right)}{4+t^{2}}. Me whakakapi 2 mō x ki te whārite y=\frac{1}{t}x-\frac{2}{t} hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=2\times \frac{1}{t}-\frac{2}{t}
Whakareatia \frac{1}{t} ki te 2.
y=\frac{1}{t}\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)-\frac{2}{t}
Me whakakapi te -\frac{2\left(t^{2}-4\right)}{4+t^{2}} ināianei mō te x ki te whārite y=\frac{1}{t}x-\frac{2}{t} ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)\times \frac{1}{t}-\frac{2}{t}
Whakareatia \frac{1}{t} ki te -\frac{2\left(t^{2}-4\right)}{4+t^{2}}.
y=2\times \frac{1}{t}-\frac{2}{t},x=2\text{ or }y=\left(-\frac{2\left(t^{2}-4\right)}{t^{2}+4}\right)\times \frac{1}{t}-\frac{2}{t},x=-\frac{2\left(t^{2}-4\right)}{t^{2}+4}
Kua oti te pūnaha te whakatau.