\left\{ \begin{array} { l } { r x - r y = 1 } \\ { r x - 9 y = r } \end{array} \right.
Whakaoti mō x, y
x=\frac{r^{2}-9}{r\left(r-9\right)}
y=-\frac{1-r}{r-9}
r\neq 9\text{ and }r\neq 0
Tohaina
Kua tāruatia ki te papatopenga
rx+\left(-r\right)y=1,rx-9y=r
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
rx+\left(-r\right)y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
rx=ry+1
Me tāpiri ry ki ngā taha e rua o te whārite.
x=\frac{1}{r}\left(ry+1\right)
Whakawehea ngā taha e rua ki te r.
x=y+\frac{1}{r}
Whakareatia \frac{1}{r} ki te ry+1.
r\left(y+\frac{1}{r}\right)-9y=r
Whakakapia te y+\frac{1}{r} mō te x ki tērā atu whārite, rx-9y=r.
ry+1-9y=r
Whakareatia r ki te y+\frac{1}{r}.
\left(r-9\right)y+1=r
Tāpiri ry ki te -9y.
\left(r-9\right)y=r-1
Me tango 1 mai i ngā taha e rua o te whārite.
y=\frac{r-1}{r-9}
Whakawehea ngā taha e rua ki te r-9.
x=\frac{r-1}{r-9}+\frac{1}{r}
Whakaurua te \frac{r-1}{r-9} mō y ki x=y+\frac{1}{r}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{r^{2}-9}{r\left(r-9\right)}
Tāpiri \frac{1}{r} ki te \frac{r-1}{r-9}.
x=\frac{r^{2}-9}{r\left(r-9\right)},y=\frac{r-1}{r-9}
Kua oti te pūnaha te whakatau.
rx+\left(-r\right)y=1,rx-9y=r
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\r\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right))\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right))\left(\begin{matrix}1\\r\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}r&-r\\r&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right))\left(\begin{matrix}1\\r\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}r&-r\\r&-9\end{matrix}\right))\left(\begin{matrix}1\\r\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{r\left(-9\right)-\left(-r\right)r}&-\frac{-r}{r\left(-9\right)-\left(-r\right)r}\\-\frac{r}{r\left(-9\right)-\left(-r\right)r}&\frac{r}{r\left(-9\right)-\left(-r\right)r}\end{matrix}\right)\left(\begin{matrix}1\\r\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{r\left(r-9\right)}&\frac{1}{r-9}\\-\frac{1}{r-9}&\frac{1}{r-9}\end{matrix}\right)\left(\begin{matrix}1\\r\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{r\left(r-9\right)}+\frac{1}{r-9}r\\-\frac{1}{r-9}+\frac{1}{r-9}r\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{r^{2}-9}{r\left(r-9\right)}\\\frac{r-1}{r-9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{r^{2}-9}{r\left(r-9\right)},y=\frac{r-1}{r-9}
Tangohia ngā huānga poukapa x me y.
rx+\left(-r\right)y=1,rx-9y=r
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
rx+\left(-r\right)x+\left(-r\right)y+9y=1-r
Me tango rx-9y=r mai i rx+\left(-r\right)y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-r\right)y+9y=1-r
Tāpiri rx ki te -rx. Ka whakakore atu ngā kupu rx me -rx, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(9-r\right)y=1-r
Tāpiri -ry ki te 9y.
y=\frac{1-r}{9-r}
Whakawehea ngā taha e rua ki te -r+9.
rx-9\times \frac{1-r}{9-r}=r
Whakaurua te \frac{1-r}{-r+9} mō y ki rx-9y=r. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
rx-\frac{9\left(1-r\right)}{9-r}=r
Whakareatia -9 ki te \frac{1-r}{-r+9}.
rx=-\frac{\left(r-3\right)\left(r+3\right)}{9-r}
Me tāpiri \frac{9\left(1-r\right)}{-r+9} ki ngā taha e rua o te whārite.
x=-\frac{r^{2}-9}{r\left(9-r\right)}
Whakawehea ngā taha e rua ki te r.
x=-\frac{r^{2}-9}{r\left(9-r\right)},y=\frac{1-r}{9-r}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}