\left\{ \begin{array} { l } { m + n = 6 } \\ { 2 m - 2 n = 6 } \end{array} \right.
Whakaoti mō m, n
m = \frac{9}{2} = 4\frac{1}{2} = 4.5
n = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
m+n=6,2m-2n=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
m+n=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
m=-n+6
Me tango n mai i ngā taha e rua o te whārite.
2\left(-n+6\right)-2n=6
Whakakapia te -n+6 mō te m ki tērā atu whārite, 2m-2n=6.
-2n+12-2n=6
Whakareatia 2 ki te -n+6.
-4n+12=6
Tāpiri -2n ki te -2n.
-4n=-6
Me tango 12 mai i ngā taha e rua o te whārite.
n=\frac{3}{2}
Whakawehea ngā taha e rua ki te -4.
m=-\frac{3}{2}+6
Whakaurua te \frac{3}{2} mō n ki m=-n+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{9}{2}
Tāpiri 6 ki te -\frac{3}{2}.
m=\frac{9}{2},n=\frac{3}{2}
Kua oti te pūnaha te whakatau.
m+n=6,2m-2n=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}1&1\\2&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-2\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{4}\times 6\\\frac{1}{2}\times 6-\frac{1}{4}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{9}{2},n=\frac{3}{2}
Tangohia ngā huānga poukapa m me n.
m+n=6,2m-2n=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2m+2n=2\times 6,2m-2n=6
Kia ōrite ai a m me 2m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2m+2n=12,2m-2n=6
Whakarūnātia.
2m-2m+2n+2n=12-6
Me tango 2m-2n=6 mai i 2m+2n=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2n+2n=12-6
Tāpiri 2m ki te -2m. Ka whakakore atu ngā kupu 2m me -2m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4n=12-6
Tāpiri 2n ki te 2n.
4n=6
Tāpiri 12 ki te -6.
n=\frac{3}{2}
Whakawehea ngā taha e rua ki te 4.
2m-2\times \frac{3}{2}=6
Whakaurua te \frac{3}{2} mō n ki 2m-2n=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
2m-3=6
Whakareatia -2 ki te \frac{3}{2}.
2m=9
Me tāpiri 3 ki ngā taha e rua o te whārite.
m=\frac{9}{2}
Whakawehea ngā taha e rua ki te 2.
m=\frac{9}{2},n=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}