\left\{ \begin{array} { l } { a x - y = 3 } \\ { ( a - 4 ) x + \sqrt { 2 } = 4 } \end{array} \right.
Whakaoti mō x, y
x=-\frac{\sqrt{2}-4}{a-4}
y=\frac{-\sqrt{2}a+a+12}{a-4}
a\neq 4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(a-4\right)x+\sqrt{2}=4,ax-y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\left(a-4\right)x+\sqrt{2}=4
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\left(a-4\right)x=4-\sqrt{2}
Me tango \sqrt{2} mai i ngā taha e rua o te whārite.
x=\frac{4-\sqrt{2}}{a-4}
Whakawehea ngā taha e rua ki te a-4.
a\times \frac{4-\sqrt{2}}{a-4}-y=3
Whakakapia te \frac{4-\sqrt{2}}{a-4} mō te x ki tērā atu whārite, ax-y=3.
\frac{\left(4-\sqrt{2}\right)a}{a-4}-y=3
Whakareatia a ki te \frac{4-\sqrt{2}}{a-4}.
-y=\frac{\sqrt{2}a-a-12}{a-4}
Me tango \frac{a\left(4-\sqrt{2}\right)}{a-4} mai i ngā taha e rua o te whārite.
y=-\frac{\sqrt{2}a-a-12}{a-4}
Whakawehea ngā taha e rua ki te -1.
x=\frac{4-\sqrt{2}}{a-4},y=-\frac{\sqrt{2}a-a-12}{a-4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}