Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(a-4\right)x+\sqrt{2}=4,ax-y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\left(a-4\right)x+\sqrt{2}=4
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\left(a-4\right)x=4-\sqrt{2}
Me tango \sqrt{2} mai i ngā taha e rua o te whārite.
x=\frac{4-\sqrt{2}}{a-4}
Whakawehea ngā taha e rua ki te a-4.
a\times \frac{4-\sqrt{2}}{a-4}-y=3
Whakakapia te \frac{4-\sqrt{2}}{a-4} mō te x ki tērā atu whārite, ax-y=3.
\frac{\left(4-\sqrt{2}\right)a}{a-4}-y=3
Whakareatia a ki te \frac{4-\sqrt{2}}{a-4}.
-y=\frac{\sqrt{2}a-a-12}{a-4}
Me tango \frac{a\left(4-\sqrt{2}\right)}{a-4} mai i ngā taha e rua o te whārite.
y=-\frac{\sqrt{2}a-a-12}{a-4}
Whakawehea ngā taha e rua ki te -1.
x=\frac{4-\sqrt{2}}{a-4},y=-\frac{\sqrt{2}a-a-12}{a-4}
Kua oti te pūnaha te whakatau.