Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a-b=1,b^{2}+a^{2}=25
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a-b=1
Whakaotia te a-b=1 mō a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=b+1
Me tango -b mai i ngā taha e rua o te whārite.
b^{2}+\left(b+1\right)^{2}=25
Whakakapia te b+1 mō te a ki tērā atu whārite, b^{2}+a^{2}=25.
b^{2}+b^{2}+2b+1=25
Pūrua b+1.
2b^{2}+2b+1=25
Tāpiri b^{2} ki te b^{2}.
2b^{2}+2b-24=0
Me tango 25 mai i ngā taha e rua o te whārite.
b=\frac{-2±\sqrt{2^{2}-4\times 2\left(-24\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\times 1\times 1\times 2 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-2±\sqrt{4-4\times 2\left(-24\right)}}{2\times 2}
Pūrua 1\times 1\times 1\times 2.
b=\frac{-2±\sqrt{4-8\left(-24\right)}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
b=\frac{-2±\sqrt{4+192}}{2\times 2}
Whakareatia -8 ki te -24.
b=\frac{-2±\sqrt{196}}{2\times 2}
Tāpiri 4 ki te 192.
b=\frac{-2±14}{2\times 2}
Tuhia te pūtakerua o te 196.
b=\frac{-2±14}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
b=\frac{12}{4}
Nā, me whakaoti te whārite b=\frac{-2±14}{4} ina he tāpiri te ±. Tāpiri -2 ki te 14.
b=3
Whakawehe 12 ki te 4.
b=-\frac{16}{4}
Nā, me whakaoti te whārite b=\frac{-2±14}{4} ina he tango te ±. Tango 14 mai i -2.
b=-4
Whakawehe -16 ki te 4.
a=3+1
E rua ngā otinga mō b: 3 me -4. Me whakakapi 3 mō b ki te whārite a=b+1 hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=4
Tāpiri 1\times 3 ki te 1.
a=-4+1
Me whakakapi te -4 ināianei mō te b ki te whārite a=b+1 ka whakaoti hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-3
Tāpiri -4 ki te 1.
a=4,b=3\text{ or }a=-3,b=-4
Kua oti te pūnaha te whakatau.