\left\{ \begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 100 } \\ { a + b = 20 } \end{array} \right.
Whakaoti mō a, b
a=10+5\sqrt{2}i\approx 10+7.071067812i\text{, }b=-5\sqrt{2}i+10\approx 10-7.071067812i
a=-5\sqrt{2}i+10\approx 10-7.071067812i\text{, }b=10+5\sqrt{2}i\approx 10+7.071067812i
Tohaina
Kua tāruatia ki te papatopenga
a+b=20
Whakaotia te a+b=20 mō a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+20
Me tango b mai i ngā taha e rua o te whārite.
b^{2}+\left(-b+20\right)^{2}=100
Whakakapia te -b+20 mō te a ki tērā atu whārite, b^{2}+a^{2}=100.
b^{2}+b^{2}-40b+400=100
Pūrua -b+20.
2b^{2}-40b+400=100
Tāpiri b^{2} ki te b^{2}.
2b^{2}-40b+300=0
Me tango 100 mai i ngā taha e rua o te whārite.
b=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 300}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 20\left(-1\right)\times 2 mō b, me 300 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 300}}{2\times 2}
Pūrua 1\times 20\left(-1\right)\times 2.
b=\frac{-\left(-40\right)±\sqrt{1600-8\times 300}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
b=\frac{-\left(-40\right)±\sqrt{1600-2400}}{2\times 2}
Whakareatia -8 ki te 300.
b=\frac{-\left(-40\right)±\sqrt{-800}}{2\times 2}
Tāpiri 1600 ki te -2400.
b=\frac{-\left(-40\right)±20\sqrt{2}i}{2\times 2}
Tuhia te pūtakerua o te -800.
b=\frac{40±20\sqrt{2}i}{2\times 2}
Ko te tauaro o 1\times 20\left(-1\right)\times 2 ko 40.
b=\frac{40±20\sqrt{2}i}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
b=\frac{40+20\sqrt{2}i}{4}
Nā, me whakaoti te whārite b=\frac{40±20\sqrt{2}i}{4} ina he tāpiri te ±. Tāpiri 40 ki te 20i\sqrt{2}.
b=10+5\sqrt{2}i
Whakawehe 40+20i\sqrt{2} ki te 4.
b=\frac{-20\sqrt{2}i+40}{4}
Nā, me whakaoti te whārite b=\frac{40±20\sqrt{2}i}{4} ina he tango te ±. Tango 20i\sqrt{2} mai i 40.
b=-5\sqrt{2}i+10
Whakawehe 40-20i\sqrt{2} ki te 4.
a=-\left(10+5\sqrt{2}i\right)+20
E rua ngā otinga mō b: 10+5i\sqrt{2} me 10-5i\sqrt{2}. Me whakakapi 10+5i\sqrt{2} mō b ki te whārite a=-b+20 hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(-5\sqrt{2}i+10\right)+20
Me whakakapi te 10-5i\sqrt{2} ināianei mō te b ki te whārite a=-b+20 ka whakaoti hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=-\left(10+5\sqrt{2}i\right)+20,b=10+5\sqrt{2}i\text{ or }a=-\left(-5\sqrt{2}i+10\right)+20,b=-5\sqrt{2}i+10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}