\left\{ \begin{array} { l } { a + b = 7 } \\ { a ^ { 2 } + b ^ { 2 } = 25 } \end{array} \right.
Whakaoti mō a, b
a=4\text{, }b=3
a=3\text{, }b=4
Pātaitai
\left\{ \begin{array} { l } { a + b = 7 } \\ { a ^ { 2 } + b ^ { 2 } = 25 } \end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
a+b=7,b^{2}+a^{2}=25
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=7
Whakaotia te a+b=7 mō a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+7
Me tango b mai i ngā taha e rua o te whārite.
b^{2}+\left(-b+7\right)^{2}=25
Whakakapia te -b+7 mō te a ki tērā atu whārite, b^{2}+a^{2}=25.
b^{2}+b^{2}-14b+49=25
Pūrua -b+7.
2b^{2}-14b+49=25
Tāpiri b^{2} ki te b^{2}.
2b^{2}-14b+24=0
Me tango 25 mai i ngā taha e rua o te whārite.
b=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times 24}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 7\left(-1\right)\times 2 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-14\right)±\sqrt{196-4\times 2\times 24}}{2\times 2}
Pūrua 1\times 7\left(-1\right)\times 2.
b=\frac{-\left(-14\right)±\sqrt{196-8\times 24}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
b=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 2}
Whakareatia -8 ki te 24.
b=\frac{-\left(-14\right)±\sqrt{4}}{2\times 2}
Tāpiri 196 ki te -192.
b=\frac{-\left(-14\right)±2}{2\times 2}
Tuhia te pūtakerua o te 4.
b=\frac{14±2}{2\times 2}
Ko te tauaro o 1\times 7\left(-1\right)\times 2 ko 14.
b=\frac{14±2}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
b=\frac{16}{4}
Nā, me whakaoti te whārite b=\frac{14±2}{4} ina he tāpiri te ±. Tāpiri 14 ki te 2.
b=4
Whakawehe 16 ki te 4.
b=\frac{12}{4}
Nā, me whakaoti te whārite b=\frac{14±2}{4} ina he tango te ±. Tango 2 mai i 14.
b=3
Whakawehe 12 ki te 4.
a=-4+7
E rua ngā otinga mō b: 4 me 3. Me whakakapi 4 mō b ki te whārite a=-b+7 hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=3
Tāpiri -4 ki te 7.
a=-3+7
Me whakakapi te 3 ināianei mō te b ki te whārite a=-b+7 ka whakaoti hei kimi i te otinga hāngai mō a e pai ai ki ngā whārite e rua.
a=4
Tāpiri -3 ki te 7.
a=3,b=4\text{ or }a=4,b=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}