Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=3,a-b=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+3
Me tango b mai i ngā taha e rua o te whārite.
-b+3-b=7
Whakakapia te -b+3 mō te a ki tērā atu whārite, a-b=7.
-2b+3=7
Tāpiri -b ki te -b.
-2b=4
Me tango 3 mai i ngā taha e rua o te whārite.
b=-2
Whakawehea ngā taha e rua ki te -2.
a=-\left(-2\right)+3
Whakaurua te -2 mō b ki a=-b+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=2+3
Whakareatia -1 ki te -2.
a=5
Tāpiri 3 ki te 2.
a=5,b=-2
Kua oti te pūnaha te whakatau.
a+b=3,a-b=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 7\\\frac{1}{2}\times 3-\frac{1}{2}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
a=5,b=-2
Tangohia ngā huānga poukapa a me b.
a+b=3,a-b=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-a+b+b=3-7
Me tango a-b=7 mai i a+b=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
b+b=3-7
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2b=3-7
Tāpiri b ki te b.
2b=-4
Tāpiri 3 ki te -7.
b=-2
Whakawehea ngā taha e rua ki te 2.
a-\left(-2\right)=7
Whakaurua te -2 mō b ki a-b=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a+2=7
Whakareatia -1 ki te -2.
a=5
Me tango 2 mai i ngā taha e rua o te whārite.
a=5,b=-2
Kua oti te pūnaha te whakatau.