\left\{ \begin{array} { l } { a + b + 3 = 2 } \\ { 4 a + 2 b + 3 = 3 } \end{array} \right.
Whakaoti mō a, b
a=1
b=-2
Tohaina
Kua tāruatia ki te papatopenga
a+b+3=2,4a+2b+3=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b+3=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a+b=-1
Me tango 3 mai i ngā taha e rua o te whārite.
a=-b-1
Me tango b mai i ngā taha e rua o te whārite.
4\left(-b-1\right)+2b+3=3
Whakakapia te -b-1 mō te a ki tērā atu whārite, 4a+2b+3=3.
-4b-4+2b+3=3
Whakareatia 4 ki te -b-1.
-2b-4+3=3
Tāpiri -4b ki te 2b.
-2b-1=3
Tāpiri -4 ki te 3.
-2b=4
Me tāpiri 1 ki ngā taha e rua o te whārite.
b=-2
Whakawehea ngā taha e rua ki te -2.
a=-\left(-2\right)-1
Whakaurua te -2 mō b ki a=-b-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=2-1
Whakareatia -1 ki te -2.
a=1
Tāpiri -1 ki te 2.
a=1,b=-2
Kua oti te pūnaha te whakatau.
a+b+3=2,4a+2b+3=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\left(-1\right)\\2\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
a=1,b=-2
Tangohia ngā huānga poukapa a me b.
a+b+3=2,4a+2b+3=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4a+4b+4\times 3=4\times 2,4a+2b+3=3
Kia ōrite ai a a me 4a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4a+4b+12=8,4a+2b+3=3
Whakarūnātia.
4a-4a+4b-2b+12-3=8-3
Me tango 4a+2b+3=3 mai i 4a+4b+12=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4b-2b+12-3=8-3
Tāpiri 4a ki te -4a. Ka whakakore atu ngā kupu 4a me -4a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2b+12-3=8-3
Tāpiri 4b ki te -2b.
2b+9=8-3
Tāpiri 12 ki te -3.
2b+9=5
Tāpiri 8 ki te -3.
2b=-4
Me tango 9 mai i ngā taha e rua o te whārite.
b=-2
Whakawehea ngā taha e rua ki te 2.
4a+2\left(-2\right)+3=3
Whakaurua te -2 mō b ki 4a+2b+3=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
4a-4+3=3
Whakareatia 2 ki te -2.
4a-1=3
Tāpiri -4 ki te 3.
4a=4
Me tāpiri 1 ki ngā taha e rua o te whārite.
a=1
Whakawehea ngā taha e rua ki te 4.
a=1,b=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}