Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+5b=2,a-2b=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+5b=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-5b+2
Me tango 5b mai i ngā taha e rua o te whārite.
-5b+2-2b=1
Whakakapia te -5b+2 mō te a ki tērā atu whārite, a-2b=1.
-7b+2=1
Tāpiri -5b ki te -2b.
-7b=-1
Me tango 2 mai i ngā taha e rua o te whārite.
b=\frac{1}{7}
Whakawehea ngā taha e rua ki te -7.
a=-5\times \frac{1}{7}+2
Whakaurua te \frac{1}{7} mō b ki a=-5b+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{5}{7}+2
Whakareatia -5 ki te \frac{1}{7}.
a=\frac{9}{7}
Tāpiri 2 ki te -\frac{5}{7}.
a=\frac{9}{7},b=\frac{1}{7}
Kua oti te pūnaha te whakatau.
a+5b=2,a-2b=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\1&-2\end{matrix}\right))\left(\begin{matrix}1&5\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-5}&-\frac{5}{-2-5}\\-\frac{1}{-2-5}&\frac{1}{-2-5}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{5}{7}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{5}{7}\\\frac{1}{7}\times 2-\frac{1}{7}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{9}{7}\\\frac{1}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{9}{7},b=\frac{1}{7}
Tangohia ngā huānga poukapa a me b.
a+5b=2,a-2b=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-a+5b+2b=2-1
Me tango a-2b=1 mai i a+5b=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5b+2b=2-1
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7b=2-1
Tāpiri 5b ki te 2b.
7b=1
Tāpiri 2 ki te -1.
b=\frac{1}{7}
Whakawehea ngā taha e rua ki te 7.
a-2\times \frac{1}{7}=1
Whakaurua te \frac{1}{7} mō b ki a-2b=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a-\frac{2}{7}=1
Whakareatia -2 ki te \frac{1}{7}.
a=\frac{9}{7}
Me tāpiri \frac{2}{7} ki ngā taha e rua o te whārite.
a=\frac{9}{7},b=\frac{1}{7}
Kua oti te pūnaha te whakatau.