\left\{ \begin{array} { l } { a + 4 b = 8 } \\ { 3 b = 5 - a } \end{array} \right.
Whakaoti mō a, b
a=-4
b=3
Tohaina
Kua tāruatia ki te papatopenga
3b+a=5
Whakaarohia te whārite tuarua. Me tāpiri te a ki ngā taha e rua.
a+4b=8,a+3b=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+4b=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-4b+8
Me tango 4b mai i ngā taha e rua o te whārite.
-4b+8+3b=5
Whakakapia te -4b+8 mō te a ki tērā atu whārite, a+3b=5.
-b+8=5
Tāpiri -4b ki te 3b.
-b=-3
Me tango 8 mai i ngā taha e rua o te whārite.
b=3
Whakawehea ngā taha e rua ki te -1.
a=-4\times 3+8
Whakaurua te 3 mō b ki a=-4b+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-12+8
Whakareatia -4 ki te 3.
a=-4
Tāpiri 8 ki te -12.
a=-4,b=3
Kua oti te pūnaha te whakatau.
3b+a=5
Whakaarohia te whārite tuarua. Me tāpiri te a ki ngā taha e rua.
a+4b=8,a+3b=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\1&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}1&4\\1&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{1}{3-4}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3&4\\1&-1\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\times 8+4\times 5\\8-5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
a=-4,b=3
Tangohia ngā huānga poukapa a me b.
3b+a=5
Whakaarohia te whārite tuarua. Me tāpiri te a ki ngā taha e rua.
a+4b=8,a+3b=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-a+4b-3b=8-5
Me tango a+3b=5 mai i a+4b=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4b-3b=8-5
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
b=8-5
Tāpiri 4b ki te -3b.
b=3
Tāpiri 8 ki te -5.
a+3\times 3=5
Whakaurua te 3 mō b ki a+3b=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a+9=5
Whakareatia 3 ki te 3.
a=-4
Me tango 9 mai i ngā taha e rua o te whārite.
a=-4,b=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}