\left\{ \begin{array} { l } { a + 3 b = 6 } \\ { a - 6 b = 12 } \end{array} \right.
Whakaoti mō a, b
a=8
b=-\frac{2}{3}\approx -0.666666667
Tohaina
Kua tāruatia ki te papatopenga
a+3b=6,a-6b=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+3b=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-3b+6
Me tango 3b mai i ngā taha e rua o te whārite.
-3b+6-6b=12
Whakakapia te -3b+6 mō te a ki tērā atu whārite, a-6b=12.
-9b+6=12
Tāpiri -3b ki te -6b.
-9b=6
Me tango 6 mai i ngā taha e rua o te whārite.
b=-\frac{2}{3}
Whakawehea ngā taha e rua ki te -9.
a=-3\left(-\frac{2}{3}\right)+6
Whakaurua te -\frac{2}{3} mō b ki a=-3b+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=2+6
Whakareatia -3 ki te -\frac{2}{3}.
a=8
Tāpiri 6 ki te 2.
a=8,b=-\frac{2}{3}
Kua oti te pūnaha te whakatau.
a+3b=6,a-6b=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}1&3\\1&-6\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-6\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-3}&-\frac{3}{-6-3}\\-\frac{1}{-6-3}&\frac{1}{-6-3}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6+\frac{1}{3}\times 12\\\frac{1}{9}\times 6-\frac{1}{9}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}8\\-\frac{2}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
a=8,b=-\frac{2}{3}
Tangohia ngā huānga poukapa a me b.
a+3b=6,a-6b=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
a-a+3b+6b=6-12
Me tango a-6b=12 mai i a+3b=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3b+6b=6-12
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9b=6-12
Tāpiri 3b ki te 6b.
9b=-6
Tāpiri 6 ki te -12.
b=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 9.
a-6\left(-\frac{2}{3}\right)=12
Whakaurua te -\frac{2}{3} mō b ki a-6b=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a+4=12
Whakareatia -6 ki te -\frac{2}{3}.
a=8
Me tango 4 mai i ngā taha e rua o te whārite.
a=8,b=-\frac{2}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}