\left\{ \begin{array} { l } { a + 3 b = 30 } \\ { 3 a + 5 b = 30 } \end{array} \right.
Whakaoti mō a, b
a=-15
b=15
Tohaina
Kua tāruatia ki te papatopenga
a+3b=30,3a+5b=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+3b=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-3b+30
Me tango 3b mai i ngā taha e rua o te whārite.
3\left(-3b+30\right)+5b=30
Whakakapia te -3b+30 mō te a ki tērā atu whārite, 3a+5b=30.
-9b+90+5b=30
Whakareatia 3 ki te -3b+30.
-4b+90=30
Tāpiri -9b ki te 5b.
-4b=-60
Me tango 90 mai i ngā taha e rua o te whārite.
b=15
Whakawehea ngā taha e rua ki te -4.
a=-3\times 15+30
Whakaurua te 15 mō b ki a=-3b+30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-45+30
Whakareatia -3 ki te 15.
a=-15
Tāpiri 30 ki te -45.
a=-15,b=15
Kua oti te pūnaha te whakatau.
a+3b=30,3a+5b=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\3&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}30\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\3&5\end{matrix}\right))\left(\begin{matrix}1&3\\3&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&5\end{matrix}\right))\left(\begin{matrix}30\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&5\end{matrix}\right))\left(\begin{matrix}30\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&5\end{matrix}\right))\left(\begin{matrix}30\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-3\times 3}&-\frac{3}{5-3\times 3}\\-\frac{3}{5-3\times 3}&\frac{1}{5-3\times 3}\end{matrix}\right)\left(\begin{matrix}30\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}&\frac{3}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}30\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}\times 30+\frac{3}{4}\times 30\\\frac{3}{4}\times 30-\frac{1}{4}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-15\\15\end{matrix}\right)
Mahia ngā tātaitanga.
a=-15,b=15
Tangohia ngā huānga poukapa a me b.
a+3b=30,3a+5b=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3a+3\times 3b=3\times 30,3a+5b=30
Kia ōrite ai a a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3a+9b=90,3a+5b=30
Whakarūnātia.
3a-3a+9b-5b=90-30
Me tango 3a+5b=30 mai i 3a+9b=90 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9b-5b=90-30
Tāpiri 3a ki te -3a. Ka whakakore atu ngā kupu 3a me -3a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4b=90-30
Tāpiri 9b ki te -5b.
4b=60
Tāpiri 90 ki te -30.
b=15
Whakawehea ngā taha e rua ki te 4.
3a+5\times 15=30
Whakaurua te 15 mō b ki 3a+5b=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a+75=30
Whakareatia 5 ki te 15.
3a=-45
Me tango 75 mai i ngā taha e rua o te whārite.
a=-15
Whakawehea ngā taha e rua ki te 3.
a=-15,b=15
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}