Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+3b=2,2a-3b=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+3b=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-3b+2
Me tango 3b mai i ngā taha e rua o te whārite.
2\left(-3b+2\right)-3b=8
Whakakapia te -3b+2 mō te a ki tērā atu whārite, 2a-3b=8.
-6b+4-3b=8
Whakareatia 2 ki te -3b+2.
-9b+4=8
Tāpiri -6b ki te -3b.
-9b=4
Me tango 4 mai i ngā taha e rua o te whārite.
b=-\frac{4}{9}
Whakawehea ngā taha e rua ki te -9.
a=-3\left(-\frac{4}{9}\right)+2
Whakaurua te -\frac{4}{9} mō b ki a=-3b+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{4}{3}+2
Whakareatia -3 ki te -\frac{4}{9}.
a=\frac{10}{3}
Tāpiri 2 ki te \frac{4}{3}.
a=\frac{10}{3},b=-\frac{4}{9}
Kua oti te pūnaha te whakatau.
a+3b=2,2a-3b=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\2&-3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\2&-3\end{matrix}\right))\left(\begin{matrix}1&3\\2&-3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-3\times 2}&-\frac{3}{-3-3\times 2}\\-\frac{2}{-3-3\times 2}&\frac{1}{-3-3\times 2}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{1}{3}\times 8\\\frac{2}{9}\times 2-\frac{1}{9}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}\\-\frac{4}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{10}{3},b=-\frac{4}{9}
Tangohia ngā huānga poukapa a me b.
a+3b=2,2a-3b=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a+2\times 3b=2\times 2,2a-3b=8
Kia ōrite ai a a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2a+6b=4,2a-3b=8
Whakarūnātia.
2a-2a+6b+3b=4-8
Me tango 2a-3b=8 mai i 2a+6b=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6b+3b=4-8
Tāpiri 2a ki te -2a. Ka whakakore atu ngā kupu 2a me -2a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9b=4-8
Tāpiri 6b ki te 3b.
9b=-4
Tāpiri 4 ki te -8.
b=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
2a-3\left(-\frac{4}{9}\right)=8
Whakaurua te -\frac{4}{9} mō b ki 2a-3b=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a+\frac{4}{3}=8
Whakareatia -3 ki te -\frac{4}{9}.
2a=\frac{20}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
a=\frac{10}{3}
Whakawehea ngā taha e rua ki te 2.
a=\frac{10}{3},b=-\frac{4}{9}
Kua oti te pūnaha te whakatau.