\left\{ \begin{array} { l } { 9 x - 4 y = 8 } \\ { 6 x - 2 y = 3 } \end{array} \right.
Whakaoti mō x, y
x=-\frac{2}{3}\approx -0.666666667
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-4y=8,6x-2y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-4y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=4y+8
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(4y+8\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{4}{9}y+\frac{8}{9}
Whakareatia \frac{1}{9} ki te 8+4y.
6\left(\frac{4}{9}y+\frac{8}{9}\right)-2y=3
Whakakapia te \frac{8+4y}{9} mō te x ki tērā atu whārite, 6x-2y=3.
\frac{8}{3}y+\frac{16}{3}-2y=3
Whakareatia 6 ki te \frac{8+4y}{9}.
\frac{2}{3}y+\frac{16}{3}=3
Tāpiri \frac{8y}{3} ki te -2y.
\frac{2}{3}y=-\frac{7}{3}
Me tango \frac{16}{3} mai i ngā taha e rua o te whārite.
y=-\frac{7}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{9}\left(-\frac{7}{2}\right)+\frac{8}{9}
Whakaurua te -\frac{7}{2} mō y ki x=\frac{4}{9}y+\frac{8}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-14+8}{9}
Whakareatia \frac{4}{9} ki te -\frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{3}
Tāpiri \frac{8}{9} ki te -\frac{14}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{3},y=-\frac{7}{2}
Kua oti te pūnaha te whakatau.
9x-4y=8,6x-2y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-4\\6&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\6&-2\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9\left(-2\right)-\left(-4\times 6\right)}&-\frac{-4}{9\left(-2\right)-\left(-4\times 6\right)}\\-\frac{6}{9\left(-2\right)-\left(-4\times 6\right)}&\frac{9}{9\left(-2\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 8+\frac{2}{3}\times 3\\-8+\frac{3}{2}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{7}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{2}{3},y=-\frac{7}{2}
Tangohia ngā huānga poukapa x me y.
9x-4y=8,6x-2y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 9x+6\left(-4\right)y=6\times 8,9\times 6x+9\left(-2\right)y=9\times 3
Kia ōrite ai a 9x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
54x-24y=48,54x-18y=27
Whakarūnātia.
54x-54x-24y+18y=48-27
Me tango 54x-18y=27 mai i 54x-24y=48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y+18y=48-27
Tāpiri 54x ki te -54x. Ka whakakore atu ngā kupu 54x me -54x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=48-27
Tāpiri -24y ki te 18y.
-6y=21
Tāpiri 48 ki te -27.
y=-\frac{7}{2}
Whakawehea ngā taha e rua ki te -6.
6x-2\left(-\frac{7}{2}\right)=3
Whakaurua te -\frac{7}{2} mō y ki 6x-2y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+7=3
Whakareatia -2 ki te -\frac{7}{2}.
6x=-4
Me tango 7 mai i ngā taha e rua o te whārite.
x=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{2}{3},y=-\frac{7}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}