\left\{ \begin{array} { l } { 9 x + y = 10 } \\ { x + 3 y = - 3 } \end{array} \right.
Whakaoti mō x, y
x = \frac{33}{26} = 1\frac{7}{26} \approx 1.269230769
y = -\frac{37}{26} = -1\frac{11}{26} \approx -1.423076923
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x+y=10,x+3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x+y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=-y+10
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{9}\left(-y+10\right)
Whakawehea ngā taha e rua ki te 9.
x=-\frac{1}{9}y+\frac{10}{9}
Whakareatia \frac{1}{9} ki te -y+10.
-\frac{1}{9}y+\frac{10}{9}+3y=-3
Whakakapia te \frac{-y+10}{9} mō te x ki tērā atu whārite, x+3y=-3.
\frac{26}{9}y+\frac{10}{9}=-3
Tāpiri -\frac{y}{9} ki te 3y.
\frac{26}{9}y=-\frac{37}{9}
Me tango \frac{10}{9} mai i ngā taha e rua o te whārite.
y=-\frac{37}{26}
Whakawehea ngā taha e rua o te whārite ki te \frac{26}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{9}\left(-\frac{37}{26}\right)+\frac{10}{9}
Whakaurua te -\frac{37}{26} mō y ki x=-\frac{1}{9}y+\frac{10}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{37}{234}+\frac{10}{9}
Whakareatia -\frac{1}{9} ki te -\frac{37}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{33}{26}
Tāpiri \frac{10}{9} ki te \frac{37}{234} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{33}{26},y=-\frac{37}{26}
Kua oti te pūnaha te whakatau.
9x+y=10,x+3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&1\\1&3\end{matrix}\right))\left(\begin{matrix}9&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\1&3\end{matrix}\right))\left(\begin{matrix}10\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\1&3\end{matrix}\right))\left(\begin{matrix}10\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&1\\1&3\end{matrix}\right))\left(\begin{matrix}10\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{9\times 3-1}&-\frac{1}{9\times 3-1}\\-\frac{1}{9\times 3-1}&\frac{9}{9\times 3-1}\end{matrix}\right)\left(\begin{matrix}10\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}&-\frac{1}{26}\\-\frac{1}{26}&\frac{9}{26}\end{matrix}\right)\left(\begin{matrix}10\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}\times 10-\frac{1}{26}\left(-3\right)\\-\frac{1}{26}\times 10+\frac{9}{26}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{26}\\-\frac{37}{26}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{33}{26},y=-\frac{37}{26}
Tangohia ngā huānga poukapa x me y.
9x+y=10,x+3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x+y=10,9x+9\times 3y=9\left(-3\right)
Kia ōrite ai a 9x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
9x+y=10,9x+27y=-27
Whakarūnātia.
9x-9x+y-27y=10+27
Me tango 9x+27y=-27 mai i 9x+y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-27y=10+27
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=10+27
Tāpiri y ki te -27y.
-26y=37
Tāpiri 10 ki te 27.
y=-\frac{37}{26}
Whakawehea ngā taha e rua ki te -26.
x+3\left(-\frac{37}{26}\right)=-3
Whakaurua te -\frac{37}{26} mō y ki x+3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{111}{26}=-3
Whakareatia 3 ki te -\frac{37}{26}.
x=\frac{33}{26}
Me tāpiri \frac{111}{26} ki ngā taha e rua o te whārite.
x=\frac{33}{26},y=-\frac{37}{26}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}