Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x+71y=135,4x+y=41
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x+71y=135
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=-71y+135
Me tango 71y mai i ngā taha e rua o te whārite.
x=\frac{1}{9}\left(-71y+135\right)
Whakawehea ngā taha e rua ki te 9.
x=-\frac{71}{9}y+15
Whakareatia \frac{1}{9} ki te -71y+135.
4\left(-\frac{71}{9}y+15\right)+y=41
Whakakapia te -\frac{71y}{9}+15 mō te x ki tērā atu whārite, 4x+y=41.
-\frac{284}{9}y+60+y=41
Whakareatia 4 ki te -\frac{71y}{9}+15.
-\frac{275}{9}y+60=41
Tāpiri -\frac{284y}{9} ki te y.
-\frac{275}{9}y=-19
Me tango 60 mai i ngā taha e rua o te whārite.
y=\frac{171}{275}
Whakawehea ngā taha e rua o te whārite ki te -\frac{275}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{71}{9}\times \frac{171}{275}+15
Whakaurua te \frac{171}{275} mō y ki x=-\frac{71}{9}y+15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1349}{275}+15
Whakareatia -\frac{71}{9} ki te \frac{171}{275} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{2776}{275}
Tāpiri 15 ki te -\frac{1349}{275}.
x=\frac{2776}{275},y=\frac{171}{275}
Kua oti te pūnaha te whakatau.
9x+71y=135,4x+y=41
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&71\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}135\\41\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&71\\4&1\end{matrix}\right))\left(\begin{matrix}9&71\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&71\\4&1\end{matrix}\right))\left(\begin{matrix}135\\41\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&71\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&71\\4&1\end{matrix}\right))\left(\begin{matrix}135\\41\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&71\\4&1\end{matrix}\right))\left(\begin{matrix}135\\41\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-71\times 4}&-\frac{71}{9-71\times 4}\\-\frac{4}{9-71\times 4}&\frac{9}{9-71\times 4}\end{matrix}\right)\left(\begin{matrix}135\\41\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{275}&\frac{71}{275}\\\frac{4}{275}&-\frac{9}{275}\end{matrix}\right)\left(\begin{matrix}135\\41\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{275}\times 135+\frac{71}{275}\times 41\\\frac{4}{275}\times 135-\frac{9}{275}\times 41\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2776}{275}\\\frac{171}{275}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{2776}{275},y=\frac{171}{275}
Tangohia ngā huānga poukapa x me y.
9x+71y=135,4x+y=41
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 9x+4\times 71y=4\times 135,9\times 4x+9y=9\times 41
Kia ōrite ai a 9x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
36x+284y=540,36x+9y=369
Whakarūnātia.
36x-36x+284y-9y=540-369
Me tango 36x+9y=369 mai i 36x+284y=540 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
284y-9y=540-369
Tāpiri 36x ki te -36x. Ka whakakore atu ngā kupu 36x me -36x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
275y=540-369
Tāpiri 284y ki te -9y.
275y=171
Tāpiri 540 ki te -369.
y=\frac{171}{275}
Whakawehea ngā taha e rua ki te 275.
4x+\frac{171}{275}=41
Whakaurua te \frac{171}{275} mō y ki 4x+y=41. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{11104}{275}
Me tango \frac{171}{275} mai i ngā taha e rua o te whārite.
x=\frac{2776}{275}
Whakawehea ngā taha e rua ki te 4.
x=\frac{2776}{275},y=\frac{171}{275}
Kua oti te pūnaha te whakatau.