Tīpoka ki ngā ihirangi matua
Whakaoti mō m, n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9m-2n=3,m+4n=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9m-2n=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
9m=2n+3
Me tāpiri 2n ki ngā taha e rua o te whārite.
m=\frac{1}{9}\left(2n+3\right)
Whakawehea ngā taha e rua ki te 9.
m=\frac{2}{9}n+\frac{1}{3}
Whakareatia \frac{1}{9} ki te 2n+3.
\frac{2}{9}n+\frac{1}{3}+4n=-1
Whakakapia te \frac{2n}{9}+\frac{1}{3} mō te m ki tērā atu whārite, m+4n=-1.
\frac{38}{9}n+\frac{1}{3}=-1
Tāpiri \frac{2n}{9} ki te 4n.
\frac{38}{9}n=-\frac{4}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
n=-\frac{6}{19}
Whakawehea ngā taha e rua o te whārite ki te \frac{38}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{2}{9}\left(-\frac{6}{19}\right)+\frac{1}{3}
Whakaurua te -\frac{6}{19} mō n ki m=\frac{2}{9}n+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-\frac{4}{57}+\frac{1}{3}
Whakareatia \frac{2}{9} ki te -\frac{6}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{19}
Tāpiri \frac{1}{3} ki te -\frac{4}{57} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{19},n=-\frac{6}{19}
Kua oti te pūnaha te whakatau.
9m-2n=3,m+4n=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-2\\1&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-2\\1&4\end{matrix}\right))\left(\begin{matrix}9&-2\\1&4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-2\\1&4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-2\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-2\\1&4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-2\\1&4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-\left(-2\right)}&-\frac{-2}{9\times 4-\left(-2\right)}\\-\frac{1}{9\times 4-\left(-2\right)}&\frac{9}{9\times 4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{1}{19}\\-\frac{1}{38}&\frac{9}{38}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 3+\frac{1}{19}\left(-1\right)\\-\frac{1}{38}\times 3+\frac{9}{38}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\\-\frac{6}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{5}{19},n=-\frac{6}{19}
Tangohia ngā huānga poukapa m me n.
9m-2n=3,m+4n=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9m-2n=3,9m+9\times 4n=9\left(-1\right)
Kia ōrite ai a 9m me m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
9m-2n=3,9m+36n=-9
Whakarūnātia.
9m-9m-2n-36n=3+9
Me tango 9m+36n=-9 mai i 9m-2n=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2n-36n=3+9
Tāpiri 9m ki te -9m. Ka whakakore atu ngā kupu 9m me -9m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-38n=3+9
Tāpiri -2n ki te -36n.
-38n=12
Tāpiri 3 ki te 9.
n=-\frac{6}{19}
Whakawehea ngā taha e rua ki te -38.
m+4\left(-\frac{6}{19}\right)=-1
Whakaurua te -\frac{6}{19} mō n ki m+4n=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m-\frac{24}{19}=-1
Whakareatia 4 ki te -\frac{6}{19}.
m=\frac{5}{19}
Me tāpiri \frac{24}{19} ki ngā taha e rua o te whārite.
m=\frac{5}{19},n=-\frac{6}{19}
Kua oti te pūnaha te whakatau.