\left\{ \begin{array} { l } { 9 m - 13 n = 22 } \\ { 2 m + 3 n = - 1 } \end{array} \right.
Whakaoti mō m, n
m=1
n=-1
Tohaina
Kua tāruatia ki te papatopenga
9m-13n=22,2m+3n=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9m-13n=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
9m=13n+22
Me tāpiri 13n ki ngā taha e rua o te whārite.
m=\frac{1}{9}\left(13n+22\right)
Whakawehea ngā taha e rua ki te 9.
m=\frac{13}{9}n+\frac{22}{9}
Whakareatia \frac{1}{9} ki te 13n+22.
2\left(\frac{13}{9}n+\frac{22}{9}\right)+3n=-1
Whakakapia te \frac{13n+22}{9} mō te m ki tērā atu whārite, 2m+3n=-1.
\frac{26}{9}n+\frac{44}{9}+3n=-1
Whakareatia 2 ki te \frac{13n+22}{9}.
\frac{53}{9}n+\frac{44}{9}=-1
Tāpiri \frac{26n}{9} ki te 3n.
\frac{53}{9}n=-\frac{53}{9}
Me tango \frac{44}{9} mai i ngā taha e rua o te whārite.
n=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{53}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{13}{9}\left(-1\right)+\frac{22}{9}
Whakaurua te -1 mō n ki m=\frac{13}{9}n+\frac{22}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{-13+22}{9}
Whakareatia \frac{13}{9} ki te -1.
m=1
Tāpiri \frac{22}{9} ki te -\frac{13}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=1,n=-1
Kua oti te pūnaha te whakatau.
9m-13n=22,2m+3n=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-13\\2&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}22\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-13\\2&3\end{matrix}\right))\left(\begin{matrix}9&-13\\2&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\2&3\end{matrix}\right))\left(\begin{matrix}22\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-13\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\2&3\end{matrix}\right))\left(\begin{matrix}22\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}9&-13\\2&3\end{matrix}\right))\left(\begin{matrix}22\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{9\times 3-\left(-13\times 2\right)}&-\frac{-13}{9\times 3-\left(-13\times 2\right)}\\-\frac{2}{9\times 3-\left(-13\times 2\right)}&\frac{9}{9\times 3-\left(-13\times 2\right)}\end{matrix}\right)\left(\begin{matrix}22\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}&\frac{13}{53}\\-\frac{2}{53}&\frac{9}{53}\end{matrix}\right)\left(\begin{matrix}22\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}\times 22+\frac{13}{53}\left(-1\right)\\-\frac{2}{53}\times 22+\frac{9}{53}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
m=1,n=-1
Tangohia ngā huānga poukapa m me n.
9m-13n=22,2m+3n=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 9m+2\left(-13\right)n=2\times 22,9\times 2m+9\times 3n=9\left(-1\right)
Kia ōrite ai a 9m me 2m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
18m-26n=44,18m+27n=-9
Whakarūnātia.
18m-18m-26n-27n=44+9
Me tango 18m+27n=-9 mai i 18m-26n=44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-26n-27n=44+9
Tāpiri 18m ki te -18m. Ka whakakore atu ngā kupu 18m me -18m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-53n=44+9
Tāpiri -26n ki te -27n.
-53n=53
Tāpiri 44 ki te 9.
n=-1
Whakawehea ngā taha e rua ki te -53.
2m+3\left(-1\right)=-1
Whakaurua te -1 mō n ki 2m+3n=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
2m-3=-1
Whakareatia 3 ki te -1.
2m=2
Me tāpiri 3 ki ngā taha e rua o te whārite.
m=1
Whakawehea ngā taha e rua ki te 2.
m=1,n=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}