Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x-3y-y=-4+x
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
8x-4y=-4+x
Pahekotia te -3y me -y, ka -4y.
8x-4y-x=-4
Tangohia te x mai i ngā taha e rua.
7x-4y=-4
Pahekotia te 8x me -x, ka 7x.
-10x+5+3\left(2y+2\right)=-1+3y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x-1.
-10x+5+6y+6=-1+3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2y+2.
-10x+11+6y=-1+3y
Tāpirihia te 5 ki te 6, ka 11.
-10x+11+6y-3y=-1
Tangohia te 3y mai i ngā taha e rua.
-10x+11+3y=-1
Pahekotia te 6y me -3y, ka 3y.
-10x+3y=-1-11
Tangohia te 11 mai i ngā taha e rua.
-10x+3y=-12
Tangohia te 11 i te -1, ka -12.
7x-4y=-4,-10x+3y=-12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-4y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=4y-4
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(4y-4\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{4}{7}y-\frac{4}{7}
Whakareatia \frac{1}{7} ki te -4+4y.
-10\left(\frac{4}{7}y-\frac{4}{7}\right)+3y=-12
Whakakapia te \frac{-4+4y}{7} mō te x ki tērā atu whārite, -10x+3y=-12.
-\frac{40}{7}y+\frac{40}{7}+3y=-12
Whakareatia -10 ki te \frac{-4+4y}{7}.
-\frac{19}{7}y+\frac{40}{7}=-12
Tāpiri -\frac{40y}{7} ki te 3y.
-\frac{19}{7}y=-\frac{124}{7}
Me tango \frac{40}{7} mai i ngā taha e rua o te whārite.
y=\frac{124}{19}
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{7}\times \frac{124}{19}-\frac{4}{7}
Whakaurua te \frac{124}{19} mō y ki x=\frac{4}{7}y-\frac{4}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{496}{133}-\frac{4}{7}
Whakareatia \frac{4}{7} ki te \frac{124}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{60}{19}
Tāpiri -\frac{4}{7} ki te \frac{496}{133} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{60}{19},y=\frac{124}{19}
Kua oti te pūnaha te whakatau.
8x-3y-y=-4+x
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
8x-4y=-4+x
Pahekotia te -3y me -y, ka -4y.
8x-4y-x=-4
Tangohia te x mai i ngā taha e rua.
7x-4y=-4
Pahekotia te 8x me -x, ka 7x.
-10x+5+3\left(2y+2\right)=-1+3y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x-1.
-10x+5+6y+6=-1+3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2y+2.
-10x+11+6y=-1+3y
Tāpirihia te 5 ki te 6, ka 11.
-10x+11+6y-3y=-1
Tangohia te 3y mai i ngā taha e rua.
-10x+11+3y=-1
Pahekotia te 6y me -3y, ka 3y.
-10x+3y=-1-11
Tangohia te 11 mai i ngā taha e rua.
-10x+3y=-12
Tangohia te 11 i te -1, ka -12.
7x-4y=-4,-10x+3y=-12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right))\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right))\left(\begin{matrix}-4\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-4\\-10&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right))\left(\begin{matrix}-4\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-4\\-10&3\end{matrix}\right))\left(\begin{matrix}-4\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7\times 3-\left(-4\left(-10\right)\right)}&-\frac{-4}{7\times 3-\left(-4\left(-10\right)\right)}\\-\frac{-10}{7\times 3-\left(-4\left(-10\right)\right)}&\frac{7}{7\times 3-\left(-4\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{19}&-\frac{4}{19}\\-\frac{10}{19}&-\frac{7}{19}\end{matrix}\right)\left(\begin{matrix}-4\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{19}\left(-4\right)-\frac{4}{19}\left(-12\right)\\-\frac{10}{19}\left(-4\right)-\frac{7}{19}\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{19}\\\frac{124}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{60}{19},y=\frac{124}{19}
Tangohia ngā huānga poukapa x me y.
8x-3y-y=-4+x
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
8x-4y=-4+x
Pahekotia te -3y me -y, ka -4y.
8x-4y-x=-4
Tangohia te x mai i ngā taha e rua.
7x-4y=-4
Pahekotia te 8x me -x, ka 7x.
-10x+5+3\left(2y+2\right)=-1+3y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x-1.
-10x+5+6y+6=-1+3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2y+2.
-10x+11+6y=-1+3y
Tāpirihia te 5 ki te 6, ka 11.
-10x+11+6y-3y=-1
Tangohia te 3y mai i ngā taha e rua.
-10x+11+3y=-1
Pahekotia te 6y me -3y, ka 3y.
-10x+3y=-1-11
Tangohia te 11 mai i ngā taha e rua.
-10x+3y=-12
Tangohia te 11 i te -1, ka -12.
7x-4y=-4,-10x+3y=-12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-10\times 7x-10\left(-4\right)y=-10\left(-4\right),7\left(-10\right)x+7\times 3y=7\left(-12\right)
Kia ōrite ai a 7x me -10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-70x+40y=40,-70x+21y=-84
Whakarūnātia.
-70x+70x+40y-21y=40+84
Me tango -70x+21y=-84 mai i -70x+40y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y-21y=40+84
Tāpiri -70x ki te 70x. Ka whakakore atu ngā kupu -70x me 70x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=40+84
Tāpiri 40y ki te -21y.
19y=124
Tāpiri 40 ki te 84.
y=\frac{124}{19}
Whakawehea ngā taha e rua ki te 19.
-10x+3\times \frac{124}{19}=-12
Whakaurua te \frac{124}{19} mō y ki -10x+3y=-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-10x+\frac{372}{19}=-12
Whakareatia 3 ki te \frac{124}{19}.
-10x=-\frac{600}{19}
Me tango \frac{372}{19} mai i ngā taha e rua o te whārite.
x=\frac{60}{19}
Whakawehea ngā taha e rua ki te -10.
x=\frac{60}{19},y=\frac{124}{19}
Kua oti te pūnaha te whakatau.