\left\{ \begin{array} { l } { 8 x + 3 y = 25 } \\ { 2 x + 3 y = 13 } \end{array} \right.
Whakaoti mō x, y
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+3y=25,2x+3y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+3y=25
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-3y+25
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-3y+25\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{3}{8}y+\frac{25}{8}
Whakareatia \frac{1}{8} ki te -3y+25.
2\left(-\frac{3}{8}y+\frac{25}{8}\right)+3y=13
Whakakapia te \frac{-3y+25}{8} mō te x ki tērā atu whārite, 2x+3y=13.
-\frac{3}{4}y+\frac{25}{4}+3y=13
Whakareatia 2 ki te \frac{-3y+25}{8}.
\frac{9}{4}y+\frac{25}{4}=13
Tāpiri -\frac{3y}{4} ki te 3y.
\frac{9}{4}y=\frac{27}{4}
Me tango \frac{25}{4} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{8}\times 3+\frac{25}{8}
Whakaurua te 3 mō y ki x=-\frac{3}{8}y+\frac{25}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+25}{8}
Whakareatia -\frac{3}{8} ki te 3.
x=2
Tāpiri \frac{25}{8} ki te -\frac{9}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=3
Kua oti te pūnaha te whakatau.
8x+3y=25,2x+3y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}8&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&3\\2&3\end{matrix}\right))\left(\begin{matrix}25\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-3\times 2}&-\frac{3}{8\times 3-3\times 2}\\-\frac{2}{8\times 3-3\times 2}&\frac{8}{8\times 3-3\times 2}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}25\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 25-\frac{1}{6}\times 13\\-\frac{1}{9}\times 25+\frac{4}{9}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
8x+3y=25,2x+3y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x-2x+3y-3y=25-13
Me tango 2x+3y=13 mai i 8x+3y=25 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8x-2x=25-13
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=25-13
Tāpiri 8x ki te -2x.
6x=12
Tāpiri 25 ki te -13.
x=2
Whakawehea ngā taha e rua ki te 6.
2\times 2+3y=13
Whakaurua te 2 mō x ki 2x+3y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
4+3y=13
Whakareatia 2 ki te 2.
3y=9
Me tango 4 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 3.
x=2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}