\left\{ \begin{array} { l } { 8 x + 20 y = 11400 } \\ { 10 x + 30 y = 22500 } \end{array} \right.
Whakaoti mō x, y
x=-2700
y=1650
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+20y=11400,10x+30y=22500
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+20y=11400
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-20y+11400
Me tango 20y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-20y+11400\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{5}{2}y+1425
Whakareatia \frac{1}{8} ki te -20y+11400.
10\left(-\frac{5}{2}y+1425\right)+30y=22500
Whakakapia te -\frac{5y}{2}+1425 mō te x ki tērā atu whārite, 10x+30y=22500.
-25y+14250+30y=22500
Whakareatia 10 ki te -\frac{5y}{2}+1425.
5y+14250=22500
Tāpiri -25y ki te 30y.
5y=8250
Me tango 14250 mai i ngā taha e rua o te whārite.
y=1650
Whakawehea ngā taha e rua ki te 5.
x=-\frac{5}{2}\times 1650+1425
Whakaurua te 1650 mō y ki x=-\frac{5}{2}y+1425. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4125+1425
Whakareatia -\frac{5}{2} ki te 1650.
x=-2700
Tāpiri 1425 ki te -4125.
x=-2700,y=1650
Kua oti te pūnaha te whakatau.
8x+20y=11400,10x+30y=22500
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&20\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11400\\22500\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}8&20\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&20\\10&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&20\\10&30\end{matrix}\right))\left(\begin{matrix}11400\\22500\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{8\times 30-20\times 10}&-\frac{20}{8\times 30-20\times 10}\\-\frac{10}{8\times 30-20\times 10}&\frac{8}{8\times 30-20\times 10}\end{matrix}\right)\left(\begin{matrix}11400\\22500\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{1}{4}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}11400\\22500\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 11400-\frac{1}{2}\times 22500\\-\frac{1}{4}\times 11400+\frac{1}{5}\times 22500\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2700\\1650\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2700,y=1650
Tangohia ngā huānga poukapa x me y.
8x+20y=11400,10x+30y=22500
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\times 8x+10\times 20y=10\times 11400,8\times 10x+8\times 30y=8\times 22500
Kia ōrite ai a 8x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
80x+200y=114000,80x+240y=180000
Whakarūnātia.
80x-80x+200y-240y=114000-180000
Me tango 80x+240y=180000 mai i 80x+200y=114000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
200y-240y=114000-180000
Tāpiri 80x ki te -80x. Ka whakakore atu ngā kupu 80x me -80x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-40y=114000-180000
Tāpiri 200y ki te -240y.
-40y=-66000
Tāpiri 114000 ki te -180000.
y=1650
Whakawehea ngā taha e rua ki te -40.
10x+30\times 1650=22500
Whakaurua te 1650 mō y ki 10x+30y=22500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
10x+49500=22500
Whakareatia 30 ki te 1650.
10x=-27000
Me tango 49500 mai i ngā taha e rua o te whārite.
x=-2700
Whakawehea ngā taha e rua ki te 10.
x=-2700,y=1650
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}