Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+2y=46,7x+3y=47
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+2y=46
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-2y+46
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-2y+46\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{4}y+\frac{23}{4}
Whakareatia \frac{1}{8} ki te -2y+46.
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
Whakakapia te \frac{-y+23}{4} mō te x ki tērā atu whārite, 7x+3y=47.
-\frac{7}{4}y+\frac{161}{4}+3y=47
Whakareatia 7 ki te \frac{-y+23}{4}.
\frac{5}{4}y+\frac{161}{4}=47
Tāpiri -\frac{7y}{4} ki te 3y.
\frac{5}{4}y=\frac{27}{4}
Me tango \frac{161}{4} mai i ngā taha e rua o te whārite.
y=\frac{27}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
Whakaurua te \frac{27}{5} mō y ki x=-\frac{1}{4}y+\frac{23}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27}{20}+\frac{23}{4}
Whakareatia -\frac{1}{4} ki te \frac{27}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{22}{5}
Tāpiri \frac{23}{4} ki te -\frac{27}{20} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{22}{5},y=\frac{27}{5}
Kua oti te pūnaha te whakatau.
8x+2y=46,7x+3y=47
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&2\\7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{22}{5},y=\frac{27}{5}
Tangohia ngā huānga poukapa x me y.
8x+2y=46,7x+3y=47
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
Kia ōrite ai a 8x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
56x+14y=322,56x+24y=376
Whakarūnātia.
56x-56x+14y-24y=322-376
Me tango 56x+24y=376 mai i 56x+14y=322 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y-24y=322-376
Tāpiri 56x ki te -56x. Ka whakakore atu ngā kupu 56x me -56x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=322-376
Tāpiri 14y ki te -24y.
-10y=-54
Tāpiri 322 ki te -376.
y=\frac{27}{5}
Whakawehea ngā taha e rua ki te -10.
7x+3\times \frac{27}{5}=47
Whakaurua te \frac{27}{5} mō y ki 7x+3y=47. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+\frac{81}{5}=47
Whakareatia 3 ki te \frac{27}{5}.
7x=\frac{154}{5}
Me tango \frac{81}{5} mai i ngā taha e rua o te whārite.
x=\frac{22}{5}
Whakawehea ngā taha e rua ki te 7.
x=\frac{22}{5},y=\frac{27}{5}
Kua oti te pūnaha te whakatau.