\left\{ \begin{array} { l } { 8 k + a = 3650 } \\ { 15 k + a = 150 } \end{array} \right.
Whakaoti mō k, a
k=-500
a=7650
Tohaina
Kua tāruatia ki te papatopenga
8k+a=3650,15k+a=150
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8k+a=3650
Kōwhiria tētahi o ngā whārite ka whakaotia mō te k mā te wehe i te k i te taha mauī o te tohu ōrite.
8k=-a+3650
Me tango a mai i ngā taha e rua o te whārite.
k=\frac{1}{8}\left(-a+3650\right)
Whakawehea ngā taha e rua ki te 8.
k=-\frac{1}{8}a+\frac{1825}{4}
Whakareatia \frac{1}{8} ki te -a+3650.
15\left(-\frac{1}{8}a+\frac{1825}{4}\right)+a=150
Whakakapia te -\frac{a}{8}+\frac{1825}{4} mō te k ki tērā atu whārite, 15k+a=150.
-\frac{15}{8}a+\frac{27375}{4}+a=150
Whakareatia 15 ki te -\frac{a}{8}+\frac{1825}{4}.
-\frac{7}{8}a+\frac{27375}{4}=150
Tāpiri -\frac{15a}{8} ki te a.
-\frac{7}{8}a=-\frac{26775}{4}
Me tango \frac{27375}{4} mai i ngā taha e rua o te whārite.
a=7650
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
k=-\frac{1}{8}\times 7650+\frac{1825}{4}
Whakaurua te 7650 mō a ki k=-\frac{1}{8}a+\frac{1825}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=\frac{-3825+1825}{4}
Whakareatia -\frac{1}{8} ki te 7650.
k=-500
Tāpiri \frac{1825}{4} ki te -\frac{3825}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=-500,a=7650
Kua oti te pūnaha te whakatau.
8k+a=3650,15k+a=150
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\15&1\end{matrix}\right)\left(\begin{matrix}k\\a\end{matrix}\right)=\left(\begin{matrix}3650\\150\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\15&1\end{matrix}\right))\left(\begin{matrix}8&1\\15&1\end{matrix}\right)\left(\begin{matrix}k\\a\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\15&1\end{matrix}\right))\left(\begin{matrix}3650\\150\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\15&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\a\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\15&1\end{matrix}\right))\left(\begin{matrix}3650\\150\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\a\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\15&1\end{matrix}\right))\left(\begin{matrix}3650\\150\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\a\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-15}&-\frac{1}{8-15}\\-\frac{15}{8-15}&\frac{8}{8-15}\end{matrix}\right)\left(\begin{matrix}3650\\150\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{1}{7}\\\frac{15}{7}&-\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}3650\\150\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 3650+\frac{1}{7}\times 150\\\frac{15}{7}\times 3650-\frac{8}{7}\times 150\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\a\end{matrix}\right)=\left(\begin{matrix}-500\\7650\end{matrix}\right)
Mahia ngā tātaitanga.
k=-500,a=7650
Tangohia ngā huānga poukapa k me a.
8k+a=3650,15k+a=150
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8k-15k+a-a=3650-150
Me tango 15k+a=150 mai i 8k+a=3650 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8k-15k=3650-150
Tāpiri a ki te -a. Ka whakakore atu ngā kupu a me -a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7k=3650-150
Tāpiri 8k ki te -15k.
-7k=3500
Tāpiri 3650 ki te -150.
k=-500
Whakawehea ngā taha e rua ki te -7.
15\left(-500\right)+a=150
Whakaurua te -500 mō k ki 15k+a=150. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
-7500+a=150
Whakareatia 15 ki te -500.
a=7650
Me tāpiri 7500 ki ngā taha e rua o te whārite.
k=-500,a=7650
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}