\left\{ \begin{array} { l } { 7 x - 8 y = 9 } \\ { 4 x - 13 y = - 10 } \end{array} \right.
Whakaoti mō x, y
x = \frac{197}{59} = 3\frac{20}{59} \approx 3.338983051
y = \frac{106}{59} = 1\frac{47}{59} \approx 1.796610169
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x-8y=9,4x-13y=-10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-8y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=8y+9
Me tāpiri 8y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(8y+9\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{8}{7}y+\frac{9}{7}
Whakareatia \frac{1}{7} ki te 8y+9.
4\left(\frac{8}{7}y+\frac{9}{7}\right)-13y=-10
Whakakapia te \frac{8y+9}{7} mō te x ki tērā atu whārite, 4x-13y=-10.
\frac{32}{7}y+\frac{36}{7}-13y=-10
Whakareatia 4 ki te \frac{8y+9}{7}.
-\frac{59}{7}y+\frac{36}{7}=-10
Tāpiri \frac{32y}{7} ki te -13y.
-\frac{59}{7}y=-\frac{106}{7}
Me tango \frac{36}{7} mai i ngā taha e rua o te whārite.
y=\frac{106}{59}
Whakawehea ngā taha e rua o te whārite ki te -\frac{59}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{8}{7}\times \frac{106}{59}+\frac{9}{7}
Whakaurua te \frac{106}{59} mō y ki x=\frac{8}{7}y+\frac{9}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{848}{413}+\frac{9}{7}
Whakareatia \frac{8}{7} ki te \frac{106}{59} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{197}{59}
Tāpiri \frac{9}{7} ki te \frac{848}{413} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{197}{59},y=\frac{106}{59}
Kua oti te pūnaha te whakatau.
7x-8y=9,4x-13y=-10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-8\\4&-13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&-13\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{7\left(-13\right)-\left(-8\times 4\right)}&-\frac{-8}{7\left(-13\right)-\left(-8\times 4\right)}\\-\frac{4}{7\left(-13\right)-\left(-8\times 4\right)}&\frac{7}{7\left(-13\right)-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}&-\frac{8}{59}\\\frac{4}{59}&-\frac{7}{59}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{59}\times 9-\frac{8}{59}\left(-10\right)\\\frac{4}{59}\times 9-\frac{7}{59}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{197}{59}\\\frac{106}{59}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{197}{59},y=\frac{106}{59}
Tangohia ngā huānga poukapa x me y.
7x-8y=9,4x-13y=-10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\left(-13\right)y=7\left(-10\right)
Kia ōrite ai a 7x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
28x-32y=36,28x-91y=-70
Whakarūnātia.
28x-28x-32y+91y=36+70
Me tango 28x-91y=-70 mai i 28x-32y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-32y+91y=36+70
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
59y=36+70
Tāpiri -32y ki te 91y.
59y=106
Tāpiri 36 ki te 70.
y=\frac{106}{59}
Whakawehea ngā taha e rua ki te 59.
4x-13\times \frac{106}{59}=-10
Whakaurua te \frac{106}{59} mō y ki 4x-13y=-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{1378}{59}=-10
Whakareatia -13 ki te \frac{106}{59}.
4x=\frac{788}{59}
Me tāpiri \frac{1378}{59} ki ngā taha e rua o te whārite.
x=\frac{197}{59}
Whakawehea ngā taha e rua ki te 4.
x=\frac{197}{59},y=\frac{106}{59}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}