\left\{ \begin{array} { l } { 7 x - 6 y = - 30 } \\ { x - 4 y = - 20 } \end{array} \right.
Whakaoti mō x, y
x=0
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x-6y=-30,x-4y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-6y=-30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=6y-30
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(6y-30\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{6}{7}y-\frac{30}{7}
Whakareatia \frac{1}{7} ki te -30+6y.
\frac{6}{7}y-\frac{30}{7}-4y=-20
Whakakapia te \frac{-30+6y}{7} mō te x ki tērā atu whārite, x-4y=-20.
-\frac{22}{7}y-\frac{30}{7}=-20
Tāpiri \frac{6y}{7} ki te -4y.
-\frac{22}{7}y=-\frac{110}{7}
Me tāpiri \frac{30}{7} ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te -\frac{22}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{6}{7}\times 5-\frac{30}{7}
Whakaurua te 5 mō y ki x=\frac{6}{7}y-\frac{30}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{30-30}{7}
Whakareatia \frac{6}{7} ki te 5.
x=0
Tāpiri -\frac{30}{7} ki te \frac{30}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=5
Kua oti te pūnaha te whakatau.
7x-6y=-30,x-4y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-6\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7\left(-4\right)-\left(-6\right)}&-\frac{-6}{7\left(-4\right)-\left(-6\right)}\\-\frac{1}{7\left(-4\right)-\left(-6\right)}&\frac{7}{7\left(-4\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{11}\\\frac{1}{22}&-\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\left(-30\right)-\frac{3}{11}\left(-20\right)\\\frac{1}{22}\left(-30\right)-\frac{7}{22}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=5
Tangohia ngā huānga poukapa x me y.
7x-6y=-30,x-4y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-6y=-30,7x+7\left(-4\right)y=7\left(-20\right)
Kia ōrite ai a 7x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
7x-6y=-30,7x-28y=-140
Whakarūnātia.
7x-7x-6y+28y=-30+140
Me tango 7x-28y=-140 mai i 7x-6y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+28y=-30+140
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
22y=-30+140
Tāpiri -6y ki te 28y.
22y=110
Tāpiri -30 ki te 140.
y=5
Whakawehea ngā taha e rua ki te 22.
x-4\times 5=-20
Whakaurua te 5 mō y ki x-4y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-20=-20
Whakareatia -4 ki te 5.
x=0
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=0,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}