Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x-2y=30,5x+2y=-156
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x-2y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=2y+30
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{7}\left(2y+30\right)
Whakawehea ngā taha e rua ki te 7.
x=\frac{2}{7}y+\frac{30}{7}
Whakareatia \frac{1}{7} ki te 30+2y.
5\left(\frac{2}{7}y+\frac{30}{7}\right)+2y=-156
Whakakapia te \frac{30+2y}{7} mō te x ki tērā atu whārite, 5x+2y=-156.
\frac{10}{7}y+\frac{150}{7}+2y=-156
Whakareatia 5 ki te \frac{30+2y}{7}.
\frac{24}{7}y+\frac{150}{7}=-156
Tāpiri \frac{10y}{7} ki te 2y.
\frac{24}{7}y=-\frac{1242}{7}
Me tango \frac{150}{7} mai i ngā taha e rua o te whārite.
y=-\frac{207}{4}
Whakawehea ngā taha e rua o te whārite ki te \frac{24}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{7}\left(-\frac{207}{4}\right)+\frac{30}{7}
Whakaurua te -\frac{207}{4} mō y ki x=\frac{2}{7}y+\frac{30}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{207}{14}+\frac{30}{7}
Whakareatia \frac{2}{7} ki te -\frac{207}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{21}{2}
Tāpiri \frac{30}{7} ki te -\frac{207}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{21}{2},y=-\frac{207}{4}
Kua oti te pūnaha te whakatau.
7x-2y=30,5x+2y=-156
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-156\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-2\\5&2\end{matrix}\right))\left(\begin{matrix}7&-2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\5&2\end{matrix}\right))\left(\begin{matrix}30\\-156\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-2\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\5&2\end{matrix}\right))\left(\begin{matrix}30\\-156\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\5&2\end{matrix}\right))\left(\begin{matrix}30\\-156\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-\left(-2\times 5\right)}&-\frac{-2}{7\times 2-\left(-2\times 5\right)}\\-\frac{5}{7\times 2-\left(-2\times 5\right)}&\frac{7}{7\times 2-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}30\\-156\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{5}{24}&\frac{7}{24}\end{matrix}\right)\left(\begin{matrix}30\\-156\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 30+\frac{1}{12}\left(-156\right)\\-\frac{5}{24}\times 30+\frac{7}{24}\left(-156\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{21}{2}\\-\frac{207}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{21}{2},y=-\frac{207}{4}
Tangohia ngā huānga poukapa x me y.
7x-2y=30,5x+2y=-156
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 7x+5\left(-2\right)y=5\times 30,7\times 5x+7\times 2y=7\left(-156\right)
Kia ōrite ai a 7x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
35x-10y=150,35x+14y=-1092
Whakarūnātia.
35x-35x-10y-14y=150+1092
Me tango 35x+14y=-1092 mai i 35x-10y=150 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-14y=150+1092
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=150+1092
Tāpiri -10y ki te -14y.
-24y=1242
Tāpiri 150 ki te 1092.
y=-\frac{207}{4}
Whakawehea ngā taha e rua ki te -24.
5x+2\left(-\frac{207}{4}\right)=-156
Whakaurua te -\frac{207}{4} mō y ki 5x+2y=-156. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{207}{2}=-156
Whakareatia 2 ki te -\frac{207}{4}.
5x=-\frac{105}{2}
Me tāpiri \frac{207}{2} ki ngā taha e rua o te whārite.
x=-\frac{21}{2}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{21}{2},y=-\frac{207}{4}
Kua oti te pūnaha te whakatau.