\left\{ \begin{array} { l } { 7 x + 5 y = 60 } \\ { 6 x + 4 y = 62 } \end{array} \right.
Whakaoti mō x, y
x=35
y=-37
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+5y=60,6x+4y=62
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+5y=60
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-5y+60
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-5y+60\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{5}{7}y+\frac{60}{7}
Whakareatia \frac{1}{7} ki te -5y+60.
6\left(-\frac{5}{7}y+\frac{60}{7}\right)+4y=62
Whakakapia te \frac{-5y+60}{7} mō te x ki tērā atu whārite, 6x+4y=62.
-\frac{30}{7}y+\frac{360}{7}+4y=62
Whakareatia 6 ki te \frac{-5y+60}{7}.
-\frac{2}{7}y+\frac{360}{7}=62
Tāpiri -\frac{30y}{7} ki te 4y.
-\frac{2}{7}y=\frac{74}{7}
Me tango \frac{360}{7} mai i ngā taha e rua o te whārite.
y=-37
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{7}\left(-37\right)+\frac{60}{7}
Whakaurua te -37 mō y ki x=-\frac{5}{7}y+\frac{60}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{185+60}{7}
Whakareatia -\frac{5}{7} ki te -37.
x=35
Tāpiri \frac{60}{7} ki te \frac{185}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=35,y=-37
Kua oti te pūnaha te whakatau.
7x+5y=60,6x+4y=62
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\62\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&5\\6&4\end{matrix}\right))\left(\begin{matrix}7&5\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\6&4\end{matrix}\right))\left(\begin{matrix}60\\62\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&5\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\6&4\end{matrix}\right))\left(\begin{matrix}60\\62\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\6&4\end{matrix}\right))\left(\begin{matrix}60\\62\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7\times 4-5\times 6}&-\frac{5}{7\times 4-5\times 6}\\-\frac{6}{7\times 4-5\times 6}&\frac{7}{7\times 4-5\times 6}\end{matrix}\right)\left(\begin{matrix}60\\62\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&\frac{5}{2}\\3&-\frac{7}{2}\end{matrix}\right)\left(\begin{matrix}60\\62\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 60+\frac{5}{2}\times 62\\3\times 60-\frac{7}{2}\times 62\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\-37\end{matrix}\right)
Mahia ngā tātaitanga.
x=35,y=-37
Tangohia ngā huānga poukapa x me y.
7x+5y=60,6x+4y=62
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 7x+6\times 5y=6\times 60,7\times 6x+7\times 4y=7\times 62
Kia ōrite ai a 7x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
42x+30y=360,42x+28y=434
Whakarūnātia.
42x-42x+30y-28y=360-434
Me tango 42x+28y=434 mai i 42x+30y=360 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y-28y=360-434
Tāpiri 42x ki te -42x. Ka whakakore atu ngā kupu 42x me -42x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=360-434
Tāpiri 30y ki te -28y.
2y=-74
Tāpiri 360 ki te -434.
y=-37
Whakawehea ngā taha e rua ki te 2.
6x+4\left(-37\right)=62
Whakaurua te -37 mō y ki 6x+4y=62. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-148=62
Whakareatia 4 ki te -37.
6x=210
Me tāpiri 148 ki ngā taha e rua o te whārite.
x=35
Whakawehea ngā taha e rua ki te 6.
x=35,y=-37
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}