Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-6+5=y-1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-1=y-1
Tāpirihia te -6 ki te 5, ka -1.
2x-1-y=-1
Tangohia te y mai i ngā taha e rua.
2x-y=-1+1
Me tāpiri te 1 ki ngā taha e rua.
2x-y=0
Tāpirihia te -1 ki te 1, ka 0.
7x+18y=43,2x-y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+18y=43
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-18y+43
Me tango 18y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-18y+43\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{18}{7}y+\frac{43}{7}
Whakareatia \frac{1}{7} ki te -18y+43.
2\left(-\frac{18}{7}y+\frac{43}{7}\right)-y=0
Whakakapia te \frac{-18y+43}{7} mō te x ki tērā atu whārite, 2x-y=0.
-\frac{36}{7}y+\frac{86}{7}-y=0
Whakareatia 2 ki te \frac{-18y+43}{7}.
-\frac{43}{7}y+\frac{86}{7}=0
Tāpiri -\frac{36y}{7} ki te -y.
-\frac{43}{7}y=-\frac{86}{7}
Me tango \frac{86}{7} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{43}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{18}{7}\times 2+\frac{43}{7}
Whakaurua te 2 mō y ki x=-\frac{18}{7}y+\frac{43}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-36+43}{7}
Whakareatia -\frac{18}{7} ki te 2.
x=1
Tāpiri \frac{43}{7} ki te -\frac{36}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=2
Kua oti te pūnaha te whakatau.
2x-6+5=y-1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-1=y-1
Tāpirihia te -6 ki te 5, ka -1.
2x-1-y=-1
Tangohia te y mai i ngā taha e rua.
2x-y=-1+1
Me tāpiri te 1 ki ngā taha e rua.
2x-y=0
Tāpirihia te -1 ki te 1, ka 0.
7x+18y=43,2x-y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&18\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}43\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&18\\2&-1\end{matrix}\right))\left(\begin{matrix}7&18\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&18\\2&-1\end{matrix}\right))\left(\begin{matrix}43\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&18\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&18\\2&-1\end{matrix}\right))\left(\begin{matrix}43\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&18\\2&-1\end{matrix}\right))\left(\begin{matrix}43\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-18\times 2}&-\frac{18}{7\left(-1\right)-18\times 2}\\-\frac{2}{7\left(-1\right)-18\times 2}&\frac{7}{7\left(-1\right)-18\times 2}\end{matrix}\right)\left(\begin{matrix}43\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{43}&\frac{18}{43}\\\frac{2}{43}&-\frac{7}{43}\end{matrix}\right)\left(\begin{matrix}43\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{43}\times 43\\\frac{2}{43}\times 43\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
2x-6+5=y-1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-3.
2x-1=y-1
Tāpirihia te -6 ki te 5, ka -1.
2x-1-y=-1
Tangohia te y mai i ngā taha e rua.
2x-y=-1+1
Me tāpiri te 1 ki ngā taha e rua.
2x-y=0
Tāpirihia te -1 ki te 1, ka 0.
7x+18y=43,2x-y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 7x+2\times 18y=2\times 43,7\times 2x+7\left(-1\right)y=0
Kia ōrite ai a 7x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
14x+36y=86,14x-7y=0
Whakarūnātia.
14x-14x+36y+7y=86
Me tango 14x-7y=0 mai i 14x+36y=86 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y+7y=86
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
43y=86
Tāpiri 36y ki te 7y.
y=2
Whakawehea ngā taha e rua ki te 43.
2x-2=0
Whakaurua te 2 mō y ki 2x-y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=2
Kua oti te pūnaha te whakatau.