Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x+y=204,x+y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+y=204
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-y+204
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-y+204\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{1}{7}y+\frac{204}{7}
Whakareatia \frac{1}{7} ki te -y+204.
-\frac{1}{7}y+\frac{204}{7}+y=24
Whakakapia te \frac{-y+204}{7} mō te x ki tērā atu whārite, x+y=24.
\frac{6}{7}y+\frac{204}{7}=24
Tāpiri -\frac{y}{7} ki te y.
\frac{6}{7}y=-\frac{36}{7}
Me tango \frac{204}{7} mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te \frac{6}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{7}\left(-6\right)+\frac{204}{7}
Whakaurua te -6 mō y ki x=-\frac{1}{7}y+\frac{204}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6+204}{7}
Whakareatia -\frac{1}{7} ki te -6.
x=30
Tāpiri \frac{204}{7} ki te \frac{6}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=30,y=-6
Kua oti te pūnaha te whakatau.
7x+y=204,x+y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}204\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&1\\1&1\end{matrix}\right))\left(\begin{matrix}7&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\1&1\end{matrix}\right))\left(\begin{matrix}204\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\1&1\end{matrix}\right))\left(\begin{matrix}204\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\1&1\end{matrix}\right))\left(\begin{matrix}204\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-1}&-\frac{1}{7-1}\\-\frac{1}{7-1}&\frac{7}{7-1}\end{matrix}\right)\left(\begin{matrix}204\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\-\frac{1}{6}&\frac{7}{6}\end{matrix}\right)\left(\begin{matrix}204\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 204-\frac{1}{6}\times 24\\-\frac{1}{6}\times 204+\frac{7}{6}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=30,y=-6
Tangohia ngā huānga poukapa x me y.
7x+y=204,x+y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x-x+y-y=204-24
Me tango x+y=24 mai i 7x+y=204 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x-x=204-24
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=204-24
Tāpiri 7x ki te -x.
6x=180
Tāpiri 204 ki te -24.
x=30
Whakawehea ngā taha e rua ki te 6.
30+y=24
Whakaurua te 30 mō x ki x+y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-6
Me tango 30 mai i ngā taha e rua o te whārite.
x=30,y=-6
Kua oti te pūnaha te whakatau.