\left\{ \begin{array} { l } { 7 n + 46 = a } \\ { 11 n + 2 = a } \end{array} \right.
Whakaoti mō n, a
n=11
a=123
Tohaina
Kua tāruatia ki te papatopenga
7n+46-a=0
Whakaarohia te whārite tuatahi. Tangohia te a mai i ngā taha e rua.
7n-a=-46
Tangohia te 46 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
11n+2-a=0
Whakaarohia te whārite tuarua. Tangohia te a mai i ngā taha e rua.
11n-a=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
7n-a=-46,11n-a=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7n-a=-46
Kōwhiria tētahi o ngā whārite ka whakaotia mō te n mā te wehe i te n i te taha mauī o te tohu ōrite.
7n=a-46
Me tāpiri a ki ngā taha e rua o te whārite.
n=\frac{1}{7}\left(a-46\right)
Whakawehea ngā taha e rua ki te 7.
n=\frac{1}{7}a-\frac{46}{7}
Whakareatia \frac{1}{7} ki te a-46.
11\left(\frac{1}{7}a-\frac{46}{7}\right)-a=-2
Whakakapia te \frac{-46+a}{7} mō te n ki tērā atu whārite, 11n-a=-2.
\frac{11}{7}a-\frac{506}{7}-a=-2
Whakareatia 11 ki te \frac{-46+a}{7}.
\frac{4}{7}a-\frac{506}{7}=-2
Tāpiri \frac{11a}{7} ki te -a.
\frac{4}{7}a=\frac{492}{7}
Me tāpiri \frac{506}{7} ki ngā taha e rua o te whārite.
a=123
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
n=\frac{1}{7}\times 123-\frac{46}{7}
Whakaurua te 123 mō a ki n=\frac{1}{7}a-\frac{46}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
n=\frac{123-46}{7}
Whakareatia \frac{1}{7} ki te 123.
n=11
Tāpiri -\frac{46}{7} ki te \frac{123}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
n=11,a=123
Kua oti te pūnaha te whakatau.
7n+46-a=0
Whakaarohia te whārite tuatahi. Tangohia te a mai i ngā taha e rua.
7n-a=-46
Tangohia te 46 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
11n+2-a=0
Whakaarohia te whārite tuarua. Tangohia te a mai i ngā taha e rua.
11n-a=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
7n-a=-46,11n-a=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}n\\a\end{matrix}\right)=\left(\begin{matrix}-46\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}n\\a\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-46\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-1\\11&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}n\\a\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-46\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}n\\a\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}-46\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}n\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-11\right)}&-\frac{-1}{7\left(-1\right)-\left(-11\right)}\\-\frac{11}{7\left(-1\right)-\left(-11\right)}&\frac{7}{7\left(-1\right)-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}-46\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}n\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{11}{4}&\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-46\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}n\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-46\right)+\frac{1}{4}\left(-2\right)\\-\frac{11}{4}\left(-46\right)+\frac{7}{4}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}n\\a\end{matrix}\right)=\left(\begin{matrix}11\\123\end{matrix}\right)
Mahia ngā tātaitanga.
n=11,a=123
Tangohia ngā huānga poukapa n me a.
7n+46-a=0
Whakaarohia te whārite tuatahi. Tangohia te a mai i ngā taha e rua.
7n-a=-46
Tangohia te 46 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
11n+2-a=0
Whakaarohia te whārite tuarua. Tangohia te a mai i ngā taha e rua.
11n-a=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
7n-a=-46,11n-a=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7n-11n-a+a=-46+2
Me tango 11n-a=-2 mai i 7n-a=-46 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7n-11n=-46+2
Tāpiri -a ki te a. Ka whakakore atu ngā kupu -a me a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4n=-46+2
Tāpiri 7n ki te -11n.
-4n=-44
Tāpiri -46 ki te 2.
n=11
Whakawehea ngā taha e rua ki te -4.
11\times 11-a=-2
Whakaurua te 11 mō n ki 11n-a=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
121-a=-2
Whakareatia 11 ki te 11.
-a=-123
Me tango 121 mai i ngā taha e rua o te whārite.
a=123
Whakawehea ngā taha e rua ki te -1.
n=11,a=123
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}