\left\{ \begin{array} { l } { 7 a - 10 b = - 64 } \\ { 5 b + 3 a = 19 } \end{array} \right.
Whakaoti mō a, b
a=-2
b=5
Tohaina
Kua tāruatia ki te papatopenga
7a-10b=-64,3a+5b=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7a-10b=-64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
7a=10b-64
Me tāpiri 10b ki ngā taha e rua o te whārite.
a=\frac{1}{7}\left(10b-64\right)
Whakawehea ngā taha e rua ki te 7.
a=\frac{10}{7}b-\frac{64}{7}
Whakareatia \frac{1}{7} ki te 10b-64.
3\left(\frac{10}{7}b-\frac{64}{7}\right)+5b=19
Whakakapia te \frac{10b-64}{7} mō te a ki tērā atu whārite, 3a+5b=19.
\frac{30}{7}b-\frac{192}{7}+5b=19
Whakareatia 3 ki te \frac{10b-64}{7}.
\frac{65}{7}b-\frac{192}{7}=19
Tāpiri \frac{30b}{7} ki te 5b.
\frac{65}{7}b=\frac{325}{7}
Me tāpiri \frac{192}{7} ki ngā taha e rua o te whārite.
b=5
Whakawehea ngā taha e rua o te whārite ki te \frac{65}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=\frac{10}{7}\times 5-\frac{64}{7}
Whakaurua te 5 mō b ki a=\frac{10}{7}b-\frac{64}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{50-64}{7}
Whakareatia \frac{10}{7} ki te 5.
a=-2
Tāpiri -\frac{64}{7} ki te \frac{50}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-2,b=5
Kua oti te pūnaha te whakatau.
7a-10b=-64,3a+5b=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&-10\\3&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-64\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&-10\\3&5\end{matrix}\right))\left(\begin{matrix}7&-10\\3&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\3&5\end{matrix}\right))\left(\begin{matrix}-64\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&-10\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\3&5\end{matrix}\right))\left(\begin{matrix}-64\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}7&-10\\3&5\end{matrix}\right))\left(\begin{matrix}-64\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7\times 5-\left(-10\times 3\right)}&-\frac{-10}{7\times 5-\left(-10\times 3\right)}\\-\frac{3}{7\times 5-\left(-10\times 3\right)}&\frac{7}{7\times 5-\left(-10\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-64\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{2}{13}\\-\frac{3}{65}&\frac{7}{65}\end{matrix}\right)\left(\begin{matrix}-64\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-64\right)+\frac{2}{13}\times 19\\-\frac{3}{65}\left(-64\right)+\frac{7}{65}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
a=-2,b=5
Tangohia ngā huānga poukapa a me b.
7a-10b=-64,3a+5b=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 7a+3\left(-10\right)b=3\left(-64\right),7\times 3a+7\times 5b=7\times 19
Kia ōrite ai a 7a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
21a-30b=-192,21a+35b=133
Whakarūnātia.
21a-21a-30b-35b=-192-133
Me tango 21a+35b=133 mai i 21a-30b=-192 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30b-35b=-192-133
Tāpiri 21a ki te -21a. Ka whakakore atu ngā kupu 21a me -21a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-65b=-192-133
Tāpiri -30b ki te -35b.
-65b=-325
Tāpiri -192 ki te -133.
b=5
Whakawehea ngā taha e rua ki te -65.
3a+5\times 5=19
Whakaurua te 5 mō b ki 3a+5b=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a+25=19
Whakareatia 5 ki te 5.
3a=-6
Me tango 25 mai i ngā taha e rua o te whārite.
a=-2
Whakawehea ngā taha e rua ki te 3.
a=-2,b=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}