\left\{ \begin{array} { l } { 6.65 A + 2.705 = 806.10 } \\ { 7 A + S = 202 } \end{array} \right.
Whakaoti mō A, S
A = \frac{160679}{1330} = 120\frac{1079}{1330} \approx 120.811278195
S = -\frac{122299}{190} = -643\frac{129}{190} \approx -643.678947368
Tohaina
Kua tāruatia ki te papatopenga
6.65A=806.1-2.705
Whakaarohia te whārite tuatahi. Tangohia te 2.705 mai i ngā taha e rua.
6.65A=803.395
Tangohia te 2.705 i te 806.1, ka 803.395.
A=\frac{803.395}{6.65}
Whakawehea ngā taha e rua ki te 6.65.
A=\frac{803395}{6650}
Whakarohaina te \frac{803.395}{6.65} mā te whakarea i te taurunga me te tauraro ki te 1000.
A=\frac{160679}{1330}
Whakahekea te hautanga \frac{803395}{6650} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
7\times \frac{160679}{1330}+S=202
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{160679}{190}+S=202
Whakareatia te 7 ki te \frac{160679}{1330}, ka \frac{160679}{190}.
S=202-\frac{160679}{190}
Tangohia te \frac{160679}{190} mai i ngā taha e rua.
S=-\frac{122299}{190}
Tangohia te \frac{160679}{190} i te 202, ka -\frac{122299}{190}.
A=\frac{160679}{1330} S=-\frac{122299}{190}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}