\left\{ \begin{array} { l } { 6.5 = 60 x + 30 y } \\ { 6 = 40 y + 50 x } \end{array} \right.
Whakaoti mō x, y
x=\frac{4}{45}\approx 0.088888889
y=\frac{7}{180}\approx 0.038888889
Graph
Tohaina
Kua tāruatia ki te papatopenga
60x+30y=6.5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40y+50x=6
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
60x+30y=6.5,50x+40y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
60x+30y=6.5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
60x=-30y+6.5
Me tango 30y mai i ngā taha e rua o te whārite.
x=\frac{1}{60}\left(-30y+6.5\right)
Whakawehea ngā taha e rua ki te 60.
x=-\frac{1}{2}y+\frac{13}{120}
Whakareatia \frac{1}{60} ki te -30y+6.5.
50\left(-\frac{1}{2}y+\frac{13}{120}\right)+40y=6
Whakakapia te -\frac{y}{2}+\frac{13}{120} mō te x ki tērā atu whārite, 50x+40y=6.
-25y+\frac{65}{12}+40y=6
Whakareatia 50 ki te -\frac{y}{2}+\frac{13}{120}.
15y+\frac{65}{12}=6
Tāpiri -25y ki te 40y.
15y=\frac{7}{12}
Me tango \frac{65}{12} mai i ngā taha e rua o te whārite.
y=\frac{7}{180}
Whakawehea ngā taha e rua ki te 15.
x=-\frac{1}{2}\times \frac{7}{180}+\frac{13}{120}
Whakaurua te \frac{7}{180} mō y ki x=-\frac{1}{2}y+\frac{13}{120}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{7}{360}+\frac{13}{120}
Whakareatia -\frac{1}{2} ki te \frac{7}{180} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{45}
Tāpiri \frac{13}{120} ki te -\frac{7}{360} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{45},y=\frac{7}{180}
Kua oti te pūnaha te whakatau.
60x+30y=6.5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40y+50x=6
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
60x+30y=6.5,50x+40y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}60&30\\50&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6.5\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}60&30\\50&40\end{matrix}\right))\left(\begin{matrix}60&30\\50&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\50&40\end{matrix}\right))\left(\begin{matrix}6.5\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}60&30\\50&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\50&40\end{matrix}\right))\left(\begin{matrix}6.5\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&30\\50&40\end{matrix}\right))\left(\begin{matrix}6.5\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{60\times 40-30\times 50}&-\frac{30}{60\times 40-30\times 50}\\-\frac{50}{60\times 40-30\times 50}&\frac{60}{60\times 40-30\times 50}\end{matrix}\right)\left(\begin{matrix}6.5\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{45}&-\frac{1}{30}\\-\frac{1}{18}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}6.5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{45}\times 6.5-\frac{1}{30}\times 6\\-\frac{1}{18}\times 6.5+\frac{1}{15}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{45}\\\frac{7}{180}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{45},y=\frac{7}{180}
Tangohia ngā huānga poukapa x me y.
60x+30y=6.5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
40y+50x=6
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
60x+30y=6.5,50x+40y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
50\times 60x+50\times 30y=50\times 6.5,60\times 50x+60\times 40y=60\times 6
Kia ōrite ai a 60x me 50x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 50 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 60.
3000x+1500y=325,3000x+2400y=360
Whakarūnātia.
3000x-3000x+1500y-2400y=325-360
Me tango 3000x+2400y=360 mai i 3000x+1500y=325 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1500y-2400y=325-360
Tāpiri 3000x ki te -3000x. Ka whakakore atu ngā kupu 3000x me -3000x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-900y=325-360
Tāpiri 1500y ki te -2400y.
-900y=-35
Tāpiri 325 ki te -360.
y=\frac{7}{180}
Whakawehea ngā taha e rua ki te -900.
50x+40\times \frac{7}{180}=6
Whakaurua te \frac{7}{180} mō y ki 50x+40y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
50x+\frac{14}{9}=6
Whakareatia 40 ki te \frac{7}{180}.
50x=\frac{40}{9}
Me tango \frac{14}{9} mai i ngā taha e rua o te whārite.
x=\frac{4}{45}
Whakawehea ngā taha e rua ki te 50.
x=\frac{4}{45},y=\frac{7}{180}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}