Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x-y=-1,6x+y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=y-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(y-1\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{6}y-\frac{1}{6}
Whakareatia \frac{1}{6} ki te y-1.
6\left(\frac{1}{6}y-\frac{1}{6}\right)+y=-1
Whakakapia te \frac{-1+y}{6} mō te x ki tērā atu whārite, 6x+y=-1.
y-1+y=-1
Whakareatia 6 ki te \frac{-1+y}{6}.
2y-1=-1
Tāpiri y ki te y.
2y=0
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{6}
Whakaurua te 0 mō y ki x=\frac{1}{6}y-\frac{1}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{6},y=0
Kua oti te pūnaha te whakatau.
6x-y=-1,6x+y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-1\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-\left(-6\right)}&-\frac{-1}{6-\left(-6\right)}\\-\frac{6}{6-\left(-6\right)}&\frac{6}{6-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-1\right)+\frac{1}{12}\left(-1\right)\\-\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{6},y=0
Tangohia ngā huānga poukapa x me y.
6x-y=-1,6x+y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x-6x-y-y=-1+1
Me tango 6x+y=-1 mai i 6x-y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-y=-1+1
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-1+1
Tāpiri -y ki te -y.
-2y=0
Tāpiri -1 ki te 1.
y=0
Whakawehea ngā taha e rua ki te -2.
6x=-1
Whakaurua te 0 mō y ki 6x+y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{6},y=0
Kua oti te pūnaha te whakatau.