\left\{ \begin{array} { l } { 6 x - 4 y = 30 } \\ { 2 x + 6 y = - 34 } \end{array} \right.
Whakaoti mō x, y
x=1
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-4y=30,2x+6y=-34
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-4y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=4y+30
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(4y+30\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{2}{3}y+5
Whakareatia \frac{1}{6} ki te 4y+30.
2\left(\frac{2}{3}y+5\right)+6y=-34
Whakakapia te \frac{2y}{3}+5 mō te x ki tērā atu whārite, 2x+6y=-34.
\frac{4}{3}y+10+6y=-34
Whakareatia 2 ki te \frac{2y}{3}+5.
\frac{22}{3}y+10=-34
Tāpiri \frac{4y}{3} ki te 6y.
\frac{22}{3}y=-44
Me tango 10 mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te \frac{22}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\left(-6\right)+5
Whakaurua te -6 mō y ki x=\frac{2}{3}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4+5
Whakareatia \frac{2}{3} ki te -6.
x=1
Tāpiri 5 ki te -4.
x=1,y=-6
Kua oti te pūnaha te whakatau.
6x-4y=30,2x+6y=-34
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-34\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}6&-4\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-4\\2&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-4\\2&6\end{matrix}\right))\left(\begin{matrix}30\\-34\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-\left(-4\times 2\right)}&-\frac{-4}{6\times 6-\left(-4\times 2\right)}\\-\frac{2}{6\times 6-\left(-4\times 2\right)}&\frac{6}{6\times 6-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{1}{22}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}30\\-34\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 30+\frac{1}{11}\left(-34\right)\\-\frac{1}{22}\times 30+\frac{3}{22}\left(-34\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-6
Tangohia ngā huānga poukapa x me y.
6x-4y=30,2x+6y=-34
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 6x+2\left(-4\right)y=2\times 30,6\times 2x+6\times 6y=6\left(-34\right)
Kia ōrite ai a 6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
12x-8y=60,12x+36y=-204
Whakarūnātia.
12x-12x-8y-36y=60+204
Me tango 12x+36y=-204 mai i 12x-8y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-36y=60+204
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-44y=60+204
Tāpiri -8y ki te -36y.
-44y=264
Tāpiri 60 ki te 204.
y=-6
Whakawehea ngā taha e rua ki te -44.
2x+6\left(-6\right)=-34
Whakaurua te -6 mō y ki 2x+6y=-34. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-36=-34
Whakareatia 6 ki te -6.
2x=2
Me tāpiri 36 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}