\left\{ \begin{array} { l } { 6 x - 3 y = 12 } \\ { 2 x + 2 y = 10 } \end{array} \right.
Whakaoti mō x, y
x=3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-3y=12,2x+2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-3y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=3y+12
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(3y+12\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{6} ki te 12+3y.
2\left(\frac{1}{2}y+2\right)+2y=10
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, 2x+2y=10.
y+4+2y=10
Whakareatia 2 ki te \frac{y}{2}+2.
3y+4=10
Tāpiri y ki te 2y.
3y=6
Me tango 4 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{2}\times 2+2
Whakaurua te 2 mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+2
Whakareatia \frac{1}{2} ki te 2.
x=3
Tāpiri 2 ki te 1.
x=3,y=2
Kua oti te pūnaha te whakatau.
6x-3y=12,2x+2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-3\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-\left(-3\times 2\right)}&-\frac{-3}{6\times 2-\left(-3\times 2\right)}\\-\frac{2}{6\times 2-\left(-3\times 2\right)}&\frac{6}{6\times 2-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{6}\\-\frac{1}{9}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 12+\frac{1}{6}\times 10\\-\frac{1}{9}\times 12+\frac{1}{3}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=2
Tangohia ngā huānga poukapa x me y.
6x-3y=12,2x+2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 6x+2\left(-3\right)y=2\times 12,6\times 2x+6\times 2y=6\times 10
Kia ōrite ai a 6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
12x-6y=24,12x+12y=60
Whakarūnātia.
12x-12x-6y-12y=24-60
Me tango 12x+12y=60 mai i 12x-6y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-12y=24-60
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=24-60
Tāpiri -6y ki te -12y.
-18y=-36
Tāpiri 24 ki te -60.
y=2
Whakawehea ngā taha e rua ki te -18.
2x+2\times 2=10
Whakaurua te 2 mō y ki 2x+2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+4=10
Whakareatia 2 ki te 2.
2x=6
Me tango 4 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}