\left\{ \begin{array} { l } { 6 x - 2 y + 3 w = - 13 } \\ { 5 x + 3 y + 2 w = - 2 } \\ { x - 4 y + 6 w = - 4 } \end{array} \right.
Whakaoti mō x, y, w
x=-2
y=2
w=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-4y+6w=-4 5x+3y+2w=-2 6x-2y+3w=-13
Me raupapa anō ngā whārite.
x=-4+4y-6w
Me whakaoti te x-4y+6w=-4 mō x.
5\left(-4+4y-6w\right)+3y+2w=-2 6\left(-4+4y-6w\right)-2y+3w=-13
Whakakapia te -4+4y-6w mō te x i te whārite tuarua me te tuatoru.
y=\frac{18}{23}+\frac{28}{23}w w=-\frac{1}{3}+\frac{2}{3}y
Me whakaoti ēnei whārite mō y me w takitahi.
w=-\frac{1}{3}+\frac{2}{3}\left(\frac{18}{23}+\frac{28}{23}w\right)
Whakakapia te \frac{18}{23}+\frac{28}{23}w mō te y i te whārite w=-\frac{1}{3}+\frac{2}{3}y.
w=1
Me whakaoti te w=-\frac{1}{3}+\frac{2}{3}\left(\frac{18}{23}+\frac{28}{23}w\right) mō w.
y=\frac{18}{23}+\frac{28}{23}\times 1
Whakakapia te 1 mō te w i te whārite y=\frac{18}{23}+\frac{28}{23}w.
y=2
Tātaitia te y i te y=\frac{18}{23}+\frac{28}{23}\times 1.
x=-4+4\times 2-6
Whakakapia te 2 mō te y me te 1 mō w i te whārite x=-4+4y-6w.
x=-2
Tātaitia te x i te x=-4+4\times 2-6.
x=-2 y=2 w=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}